• Title/Summary/Keyword: Hardware-Software Cosynthesis

Search Result 2, Processing Time 0.015 seconds

Hardware-Software Cosynthesis of Multitask Multicore SoC with Real-Time Constraints (실시간 제약조건을 갖는 다중태스크 다중코어 SoC의 하드웨어-소프트웨어 통합합성)

  • Lee Choon-Seung;Ha Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.592-607
    • /
    • 2006
  • This paper proposes a technique to select processors and hardware IPs and to map the tasks into the selected processing elements, aming to achieve high performance with minimal system cost when multitask applications with real-time constraints are run on a multicore SoC. Such technique is called to 'Hardware-Software Cosynthesis Technique'. A cosynthesis technique was already presented in our early work [1] where we divide the complex cosynthesis problem into three subproblems and conquer each subproblem separately: selection of appropriate processing components, mapping and scheduling of function blocks to the selected processing component, and schedulability analysis. Despite good features, our previous technique has a serious limitation that a task monopolizes the entire system resource to get the minimum schedule length. But in general we may obtain higher performance in multitask multicore system if independent multiple tasks are running concurrently on different processor cores. In this paper, we present two mapping techniques, task mapping avoidance technique(TMA) and task mapping pinning technique(TMP), which are applicable for general cases with diverse operating policies in a multicore environment. We could obtain significant performance improvement for a multimedia real-time application, multi-channel Digital Video Recorder system and for randomly generated multitask graphs obtained from the related works.

Design of a cosynthesis system for pipelined application-specific instruction processors (파이프라인을 지원하는 ASIP 합성 시스템의 설계)

  • 현민호;이석근;박창욱;황선영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.444-453
    • /
    • 1997
  • This paper presents the prototype design of hardware/software cosynthesis system for pipelined application-specific instruction processors. Taking application programs in VHDL as inputs, the proposed system generates a pipelined instruction-set processor and the instruction sequences running on the generated machine. The design space of datapath and controller is defined by the architectural templates embedded in the system. Generating the intyermediate code adequate for parallelism analysis and extraction, the system converts it into assembly codes. Experimental results show the effectiveness of the proposed system.

  • PDF