• 제목/요약/키워드: Hardware Neural Networks

검색결과 114건 처리시간 0.026초

수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현 (A hardware implementation of neural network with modified HANNIBAL architecture)

  • 이범엽;정덕진
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF

Transformer를 활용한 인공신경망의 경량화 알고리즘 및 하드웨어 가속 기술 동향 (Trends in Lightweight Neural Network Algorithms and Hardware Acceleration Technologies for Transformer-based Deep Neural Networks)

  • 김혜지;여준기
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.12-22
    • /
    • 2023
  • The development of neural networks is evolving towards the adoption of transformer structures with attention modules. Hence, active research focused on extending the concept of lightweight neural network algorithms and hardware acceleration is being conducted for the transition from conventional convolutional neural networks to transformer-based networks. We present a survey of state-of-the-art research on lightweight neural network algorithms and hardware architectures to reduce memory usage and accelerate both inference and training. To describe the corresponding trends, we review recent studies on token pruning, quantization, and architecture tuning for the vision transformer. In addition, we present a hardware architecture that incorporates lightweight algorithms into artificial intelligence processors to accelerate processing.

멤리스터 브리지 시냅스 기반 신경망 회로 설계 및 하드웨어적으로 구현된 인공뉴런 시뮬레이션 (Memristor Bridge Synapse-based Neural Network Circuit Design and Simulation of the Hardware-Implemented Artificial Neuron)

  • 양창주;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.477-481
    • /
    • 2015
  • Implementation of memristor-based multilayer neural networks and their hardware-based learning architecture is investigated in this paper. Two major functions of neural networks which should be embedded in synapses are programmable memory and analog multiplication. "Memristor", which is a newly developed device, has two such major functions in it. In this paper, multilayer neural networks are implemented with memristors. A Random Weight Change algorithm is adopted and implemented in circuits for its learning. Its hardware-based learning on neural networks is two orders faster than its software counterpart.

LabVIEW에 의한 Tracking 신호 분류 및 인식 (Classification and recognition of electrical tracking signal by means of LabVIEW)

  • 김대복;김정태;오성권
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.779-787
    • /
    • 2010
  • In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.

뉴로모픽 포토닉스 기술 동향 (Trends in Neuromorphic Photonics Technology)

  • 권용환;김기수;백용순
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

CMOS-IC Implementation of a Pulse-type Hardware Neuron Model with Bipolar Transistors

  • Torita, Kiyoko;Matsuoka, Jun;Sekine, Yoshifumi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.615-618
    • /
    • 2000
  • A number of studies have recently been made on hardware for a biological neuron f3r application with information processing functions of neural networks. We have been trying to produce hardware from the viewpoint that development of a new hardware neuron model is one of the important problems in the study of neural networks. In this paper, we first discuss the circuit structure of a pulse-type hardware neuron model with the enhancement-mode MOSFETs (E-MOSFETs). And we construct a pulse-type hardware neuron model using I-MOSFETs. As a result, it is shown that our proposed new model can exhibit firing phenomena even if the power supply voltage becomes less than 1.5[V]. So it is verified that our model is profitable for IC.

  • PDF

임의의 다차원 정보의 온라인 전송을 위한 상관기법전파신경망 (Correlation Propagation Neural Networks for processing On-line Interpolation of Multi-dimention Information)

  • 김종만;김원섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.83-87
    • /
    • 2007
  • Correlation Propagation Neural Networks is proposed for On-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D CPNN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the CPNN hardware.

  • PDF

실시간 보간 가능을 갖는 정보전파신경망의 개발 (Development of Information Propagation Neural Networks processing On-line Interpolation)

  • 김종만;신동용;김형석;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.461-464
    • /
    • 1998
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the LIPN hardware.

  • PDF

정보데이터의 복원기법 응용한 실시간 하드웨어 신경망 (Realtime Hardware Neural Networks using Interpolation Techniques of Information Data)

  • 김종만;김원섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.506-507
    • /
    • 2007
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed.

  • PDF

오픈 플랫폼 호환 지능형 IoT 컴포넌트 자동 생성 도구 (Automatic Generation Tool for Open Platform-compatible Intelligent IoT Components)

  • 김서연;정진만;김봉재;윤영선;장준혁
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.32-39
    • /
    • 2022
  • AI 서비스를 제공하는 IoT 응용이 늘어나면서 자율적인 학습 및 추론을 지원하는 다양한 하드웨어와 소프트웨어들이 개발되고 있다. 하지만 하드웨어마다 특성 및 제약조건이 상이하여 IoT 응용 개발에 어려움이 가중됨에 따라 통합된 플랫폼의 개발이 요구되고 있다. 본 논문에서는 IoT 기술뿐만 아니라 인공 신경망 및 스파이킹 신경망 기반의 컴포넌트를 오픈 플랫폼과 호환되도록 자동 생성하는 도구를 제안한다. 제안하는 컴포넌트 자동 생성 도구는 IoT 및 AI의 가상 컴포넌트 계층을 통해 다양한 하드웨어의 특성에 맞는 컴포넌트 생성을 용이하게 하고 자동으로 오픈 플랫폼에 적용할 수 있도록 지원한다.