• Title/Summary/Keyword: Hardware In the Loop 시뮬레이션

Search Result 117, Processing Time 0.06 seconds

Integrated Simulation System of Aircraft

  • Wang, Xingren
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.68-71
    • /
    • 2001
  • Integrated Simulation System of Aircraft is a networked virtual synthetic environment. This paper presents hardware-in-the-loop simulation, man-in-the-loop simulation, computer generated aircraft, virtual prototype of aircraft dynamics, and networked simulation system.

  • PDF

Virtual Environment Hardware-In-the-Loop Simulation for Verification of OHT Controller (OHT 제어기 검증을 위한 가상환경 HIL 시뮬레이션)

  • Lee, Kwan Woo;Lee, Woong Geun;Park, Sang Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.11-20
    • /
    • 2019
  • This paper presents a HILS(Hardware-In-the-Loop Simulation) approach for the verification of the OHT (Overhead Hoist Transport) controller in a semiconductor FAB. Since hundreds of OHTs can run simultaneously on the OHT network of a FAB, the full verification of the OHT controller is very essential to guarantee the stableness of the material handling system. The controller needs to fully consider not only normal situations but also abnormal situations that are difficult to predict. For the verification of the controller, we propose a HILS approach using a virtual environment including OHTs on a rail network, which can generate abnormal situations. The proposed HILS approach has been implemented and tested with various examples.

편대비행 위성의 자세 동기화를 위한 SDRE 추적 제어기와 Hardware-In-the-Loop 시뮬레이션

  • Jeong, Jun-O;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • 편대비행 위성이 공동의 임무를 수행하기 위해서는 편대를 이루는 위성의 각기 다른 초기 오차와 다양한 외란 환경에서도 자세 동기화를 이룰 수 있는 기법이 필요하다. 이 연구에서는 편대비행위성의 자세 동기화를 위하여 비선형 시스템에 대한 준최적 제어기법인 SDRE(State-Dependent Riccati Equation)에 기반한 추적 제어기가 사용되었다. 반작용 휠이 포함된 위성의 자세 동역학이 SDRE 추적 제어기를 구성하는데 이용된다. 이를 Leader/Follower 편대비행 시스템에 적용하며, 기준 자세를 추적하는 Leader 위성의 자세를 Follower 위성이 추적하여 자세 동기화를 이룰 수 있다. MATLAB과 SIMULINK를 이용한 수치해석적 시뮬레이션으로 추적 제어기의 성능을 검증하였으며, 이에 대한 실시간 HIL(Hardware-In-the-Loop) 시뮬레이션이 수행되었다. 무중력 환경을 모사하는 에어베어링시스템과 세 개의 반작용 휠을 장착한 자세제어 HILS(Hardware-In-the-Loop Simulator)는 PC104 타입의 임베디드 컴퓨터에서 SIMULINK의 xPC Target을 이용한 실시간 시뮬레이션 환경을 제공하며, 이에 적용되는 SDRE 추적 제어기는 이산화되어 설계되었다. 또한 SDRE 추적 제어기에 대한 안정성을 보장하는 영역이 추정되어 위 추적 제어기가 위성 편대비행에 적합한 자세 동기화 기법임을 보였다.

  • PDF

A Study on the Development of HWIL Simulation Control System for High Maneuver Guided Missile System (고기동 유도무기를 위한 HWIL 시뮬레이션 제어 시스템 개발 연구)

  • Kim, Woon-Sik;Lee, Byung-Sun;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1659-1666
    • /
    • 2010
  • The High maneuver missiles use various interfaces and high speed guidance and control loop. Hardware-in-the-Loop(HWIL) simulation control system, therefore, should have high performance computing power and hardware interface capabilities, and should be developed using IT technology with which real time operating system, embedded system, data communication technology, and real time hardware control are integrated. This paper suggests the control system design techniques, such as a system hardware configuration, a job distribution algorithm for high performance multi-processors, a real time calculation and control mechanism, inter-processor communication mechanism, and a real time data acquisition technique, to perform the HWIL simulation for high maneuver missile system.

Vehicle dynamic analysis of continuously controlled semi-active suspension using hardware-in-the-loop simulation (Hardware-in-the-loop 시뮬레이션을 이용한 연속 가변식 반능동 현가 시스템의 차량 동역학적 해석)

  • 황성호;허승진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1107-1112
    • /
    • 1996
  • A semi-active suspension system with continuously variable damper is greatly expected to be mainly used in the future as a high-performance suspension system due to its cost-effectiveness, light weight, and low energy consumption. To develop the suitable control logic for the semi-active suspension system, the hardware-in-the-loop simulation is performed with the experimental continuously variable damper combined with a quarter-car model. The hardware-in-the-loop simulation results are compared for passive, on/off controlled, and continuously controlled dampers in the aspects of ride comfort and driving safety, assuming each damper to be installed on a vehicle.

  • PDF

A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation (실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가)

  • Choi, G.J.;Noh, K.H.;Yoo, Y.M.;Kim, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF

Islanded Microgrid Simulation using Hardware-in-the Loop Simulation (HILS) System based on OPAL-RT (OPAL-RT 기반의 Hardware-in-the-Loop Simulation (HILS) 시스템을 이용한 독립운전모드 마이크로그리드 시뮬레이션)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.566-572
    • /
    • 2013
  • A microgrid is a small scale power system. The microgrid is operated in two operation modes, the grid-connected mode and the islanded mode. In the islanded mode, the frequency of a microgrid should be maintained constantly. For this, the balance between power supply and power demand during islanded mode should be met. In general, energy storage systems (ESSs) are used to solve power imbalance. In this paper, the frequency control effect of a Lithium-ion battery energy storage system (Li-ion BESS) has been tested on the hardware-in-the loop simulation (HILS) system environment.