• Title/Summary/Keyword: Hardness of Mating Material

Search Result 6, Processing Time 0.02 seconds

Tribology Characteristics of DLC Film Based on Hardness of Mating Materials (경질탄소 필름과 대면물질 경도변화에 대한 트라이볼로지 특성)

  • Na Byung Chul;Tanaka Akihiro
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.50-55
    • /
    • 2003
  • Tribological testing of DLC films was conducted using a rotating type ball on a disk friction tester in a dry chamber. This study made use of four kinds of mating balls that were made with stainless steel but subjected to diverse annealing conditions in order to achieve different levels of hardness. In all load conditions using martensite mating balls, the test results demonstrated that the friction coefficient was lower when the mating materials were harder. The high friction coefficient found in soft martensite balls appeared to be caused by the larger contact areas. The wear track on the mating balls indicated that a certain amount of material transfer occurs from the DLC film to the mating ball during the high friction process. Raman Spectra analysis showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

  • PDF

Tribological Characteristics of Diamond-like Carbon Films Based on Hardness of Mating Materials

  • Na, Byung-Chul;Tanaka, Akihiro
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.147-148
    • /
    • 2002
  • This study made use of four kinds of mating balls that were made with stainless steel but subjected to different annealing conditions in order to achieve different levels of hardness. In all load conditions, testing results demonstrated that the harder the mating materials, the lower the friction coefficient was. Conversely, the high friction coefficient found in soft martensite balls appeared to be caused by the larger contact area between the DLC film and the ball. Raman Spectra analysis showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

  • PDF

A Study on Tribological Characteristics of DLC Films Considering Hardness of Mating Materials (상대 재료의 경도를 고려한 DLC필름의 트라이볼로지 특성)

  • Na, Byeong-Cheol;Tanaka, Akihiro
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.260-266
    • /
    • 2002
  • DLC films were deposited on Si wafer by RF plasma assisted CVD using CH4 gas. Tribological tests were conducted using rotating type ball on disk friction tester in dry air. Four kinds of mating balls were used. The mating balls were made with stainless steel but apply different annealing conditions to achieve different hardness conditions. Testing results in all load conditions showed that the harder the mating materials, the lower the friction coefficient among the three kind of martensite mating balls. In case of austenite balls, the friction coefficients were lower than fully annealed martensite ball. The high friction coefficient in soft martensite balls seems to be caused by the larger contact area between DLC film and ball. The wear tracks of DLC films and mating balls could have proven that effect. Measuring the wear track of both DLC films and mating balls have similar tendency comparing to the results of friction coefficients. Wear rate of austenite balls were also smaller than that of fully annealed martensite ball. The results of effect of applying load showed, the friction coefficients were become decrease when the applying loads exceed critical load conditions. The wear track of mating balls showed that some material transfer occurs from DLC film to mating ball during the high friction process. Raman spectra analysis showed that transferred material was a kind of graphite and contact surface of DLC film seems to undergo phase transition from carbon to graphite during the high friction process.

Effect of Hardness of Mating Materials on DLC Tribological Characteristics

  • Na, Byung-Chul;Akihiro Tanaka
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Diamond-like Carbon(DLC) films were deposited on Si wafers by an RF-plasma-assisted CVD using CH$_4$gas. Tribological tests were conducted with the use of a rotating type ball on a disk friction tester with dry air. This study made use of four kinds of mating balls that were made with stainless steel but subjected to different annealing conditions in order to achieve different levels of hardness. In all load conditions, testing results demonstrated that the harder the mating materials, the lower the friction coefficient was. The friction coefficients were fecund to be lower with austenite mating balls than with fully annealed martensite balls. Conversely, the high friction coefficient found in soft martensite balls appeared to be caused by the larger contact area between the DLC film and the ball. The wear tracks on DLC films and mating balls could prove that effect. Measuring the wear track of both DLC films and mating balls revealed a similar tendency compared to the results of friction coefficients. The wear rate of austenite balls was also less than that of fully annealed martensite balls. Friction eoefficients decrease when applied leads exceed critical amount. The wear track on mating balls showed that a certain amount of material transfer occurs from the DLC film to the mating ball during a high friction process. Raman Spectra analysis Showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

Analysis of Sliding Wear Properties for Arc-melted Intermetallic Compounds of Ni3Al, NiAl and TiAl (Arc melting으로 제조한 금속간화합물 Ni3Al, NiAl 및 TiAl의 미끄럼 마모특성 해석)

  • Lee, Han-Young;Kim, Tae-Jun;Cho, Yong-Jae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.267-273
    • /
    • 2009
  • Three types of structural intermetallic compounds, $Ni_3Al$, NiAl and TiAl, having each single phase structure without pores were produced by arc-melting process. Their sliding wear properties were investigated against a hardened tool steel. It was shown that the wear of the intermetallic compounds was hardly occurred against the hardened tool steel. TiAl compound showed the best wear resistance among them. In this case, wear was preferentially occurred on the surface of the hardened tool steel of the mating material which has higher hardness. It could be found that the wear mode on intermetallics without pores by arc-melting process was different from that on its porous layer coated on steel by combustion synthesis.

Characteristics of a new cultivar 'Hwaseong 5ho' in Pleurotus ostreatus (신품종 느타리버섯 '화성5호'의 특성)

  • Lee, Jeong-Woo;Han, Yong-Sik;Cheong, Jong-Chun
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • "Hwaseong 5ho" was developed by the method of Di-mon mating between monokaryotic strains derived from "Hwaseong 1ho" and dikaryotic strain "PSC109". The color of pileus was dark grayish brown, the shape of pileus was convex or infundibuliform. The length of stipe was longer and the thickness of stipe was some thinner than Suhan 1ho. Material properties of stipe of "Hwaseong 5ho" was higher in strength, hardness, chewingness and brittleness than Suhan 1ho, but similar in elasticity and cohesion. RAPD using URP-primer showed not the same between two strains. Days of primordia formation period were 22-27 days after spawning, that was a little later than Suhan 1ho. In the trial using culture box containing composted cotton waste, yield index of 'Hwaseong 5ho' was 16.6% higher than Suhan 1ho. The farm field trial were showed stable productivity in each different growing conditions.