• Title/Summary/Keyword: Hardening mechanism

Search Result 121, Processing Time 0.03 seconds

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

Basic Principles of Magnetic Resonance Imaging (자가공명영상(Magnetic Resonance Imaging)의 기본원리)

  • Cho Bong-Hae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.7-20
    • /
    • 1999
  • Magnetic resonance imaging with its superior soft tissue contrast resolution and absence of beam hardening artifacts, combined with its ability to perform multiplanar imaging, is now effective tool in diagnostic imagings. Magnetic resonance is primarily a phenomenon that involves atomic nuclei. It provides totally new clinical informations with no known hazards through the use of very weak interactions with endogenous stable magnetic atomic nuclei. This article briefly summarizes the basic mechanism of generation and detection of the signals and general sorts of tissue properties which can influence the signals and thereby give rise to tissue contrast. It also describes how the machine-operating parameters can be used to manipulate the tissue contrast observed in the image.

  • PDF

Strength Behaviour and Hardening Mechanism of Chemical Bonded Fly Ash Mortar (화학적 결합에 의한 Fly ash 경화체의 강도 발현 메카니즘)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.373-376
    • /
    • 2005
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_{2}$ and $Al_{2}O_{3}$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^{-}$ through alkali activators. We used alkali activators for supplying it with additional $OH^{-}$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time.

  • PDF

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Strength behaviour and hardening mechanism of alkali activated fly ash Mortars (알카리 활성화에 의한 fly ash 경화체의 강도 발현 메카니즘에 관한 연구)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Lim Sang Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.321-324
    • /
    • 2004
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. So it is needed to study the binder obtained by chemically activation of pozzolanic materials by means of a substitute for the exiting cement. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time. Also Scanning electron microscopy and X-Ray diffraction analysis show what the reaction products of the alkali activated fly ash are.

  • PDF

Hydration Properties of $\alpha$-Tricalcium Phosphate in Tris. Solution ($\alpha$-Tricalcium Phosphate의 Tris. Solution에서의 수화특성)

  • 인경필;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.905-910
    • /
    • 1993
  • $\alpha$-tricalcium phosphate($\alpha$-TCP) powders were synthesized and their hydration properties were investigated in Tris. solution. Two kinds of $\alpha$-TCP powder samples were prepared; the one is reaction product of CaHPO4.2H2O and CaCO3, and another is that of hydroxyapatite(HAp) and $\beta$-Ca2P2O7. They were satisfied with Ca/P mole ratio 1.5 and were heated at 150$0^{\circ}C$ for 5 hours. In the hydration of $\alpha$-TCP samples the powder which was synthesized from HAp and $\beta$-Ca2P2O7 was hydrated faster than that from CaHPO4.2H2O and CaCO3. The hydration reaction of $\alpha$-TCP powder transformed rapidly into HAp accompanying setting and hardening. It was realized that the hydration reaction of $\alpha$-TCP was due to the solution-precipitation mechanism and the hydrates from the reaction were Ca-deficient HAp having funtional group HPO42-.

  • PDF

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong;Yan, Qun;Li, Xiang
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.159-172
    • /
    • 2014
  • A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.

A Study on the Safety Evaluation of Design for Piping Materials (II) (배관용재료의 설계시 안전성 평가에 관한 연구(II))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.3-10
    • /
    • 1995
  • For most engineering materials are influenced by the dominant mechanism resisting crack extention under large scale yielding conditions. Continuum mechanics analysis shows that fracture toughness, in addition to depending on young's modulus, flow stress strain hardening exponent, and yield strain, should be nearly proportoinal to the effective fracture ductility obtained for the stress state characteristic for region ahead of the crack; plane stress or plane strain. It's known that, in most ductile materials, crack propagation of the material strongly governed by the $J_{IC}$ value, which is still difficult to determine for it's complicate and treble-some determinative process. This paper, on the assumption that, initiation of crack tip strain field reaches on the relationships between the critical value of J-integral ($J_{IC}$) and the local fracture strain(${\varepsilon}_c$) in uniaxial tensile test in the region of maximun reduction areas was described.

  • PDF

The Evolution of Dynamically Recrystallized Microstructure for SCM 440 (SCM 440 강재의 동적 재결정 조직 변화에 관한 연구)

  • 한형기;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF

Deposition Behavior and Properties of Carbon Nanotube Aluminum Composite Coatings in Kinetic Spraying Process (탄소 나노튜브 알루미늄 복합재료 저온 분사 코팅의 적층 거동 및 특성)

  • Kang, Ki-Cheol;Xiong, Yuming;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.36-42
    • /
    • 2008
  • Carbon nanotube (CNT) aluminum composite coatings were built up through kinetic spraying process. Deposition behavior of CNT aluminum composite on an aluminum 1050 alloy substrate was analyzed based on deposition mechanism of kinetic spraying. The microstructure of CNT aluminum composite coating were observed and analyzed. Also, the electrical resistivity, bond strength and micro-hardness of the CNT aluminum composite coatings were measured and compared to kinetic sprayed aluminum coatings. The CNT aluminum composite coatings have a dense structure with low porosity. Compared to kinetic sprayed aluminum coating, the CNT aluminum composite coatings present lower electrical resistivity and higher micro-hardness due to high electrical conductivity and dispersion hardening effects of CNTs.