• Title/Summary/Keyword: Hard-to-machine materials

Search Result 78, Processing Time 0.028 seconds

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

A Case Study on the Development of New Process for Treatment of Waste Waters from Ships (선박폐수 처리공정의 개발에 관한 사례)

  • Choi, Sang-Mo;Heo, In-Seok;Yang, Seok-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • Korea Marine Environment Management Corporation (KOEM) has waste oil facilities in 13 ports to collect and treat waste oil, bilge, etc. from ships based upon the Marine Environment Management Act of Korea and MARPOL 73/78 convention. Those facilities were designed and have been operated simply to discharge water under the level 15 ppm of oil contents. However, bad smells occurred from rotten organic matters in waste water and direct discharge of harmful substances to receiving water caused civil appeals. Therefore, KOEM tried to develop new process for treatment of oily waste water from ships, which could mitigate harmful substances, save cost, calm down civil appeals and contribute to marine environment preservation. This process consists of 3 steps to remove oil contents via gravity variation at first, $O_3$ input to contact water and organism deposition by inputting condensate deposits. Then finally upper water will be discharged, and the deposited substances in the bottom will be compressed through spinning machine to transfer to the designated contractors for treatment of wastes. This is very effective and innovative in that it could reduce 3 or 4 steps compared with existing process and mitigate not only waste oil concentration but also hard resolving materials such as colloid, ABS, phosphorus, nitrogen and bad smells. This method is expected to minimize bad smells and harmful gases, to save more than 10% of maintenance cost, and to arrange the good base for garbage treatment business dealing with waste water and bad smell.

  • PDF

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

FABRICATION OF PLATELET-RICH PLASMA IN A RAT MODEL AND THE EFFICACY TEST IN VITRO (백서에서 혈소판 풍부 혈장의 제작과 유효성에 대한 실험적 연구)

  • Lee, Sang-Hoon;Cho, Young-Uk;Chi, Hyun-Sook;Ahn, Kang-Min;Lee, Bu-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • Purpose: Platelet-rich plasma (PRP) is known to accelerate and/or enhance hard and soft tissue healing and regeneration. As such, PRP has been used in various clinical fields of surgery. Recently there have been several attempts to use PRP in the field of tissue engineering. However, some controversies still exist on exact mechanism and benefits of PRP. Therefore various animal experiments are necessary to reveal the effect of the PRP. However, even if animal experiment is performed, the efficacy of the experiment could not be validated due to absence of an animal PRP model. The purpose of this study is to establish rat PRP model by comparing several PRP fabricating methods, and to assay growth factor concentration in the PRP. Materials and methods: Rat blood samples were collected from nine SD rat (body weight: 600-800g). PRP was prepared using three different PRP fabricating methods according to previously reported literatures. (Method 1: 800 rpm, 15 minute, single centrifuge; Method 2: 1000 rpm, 10 minute, double centrifuge; Method 3: 3000 rpm, 4min and 2500 rpm, 8 min, double centrifuge). Platelet counts were evaluated in an automated machine before and after PRP fabrications. In terms of growth factor assay, prepared PRP were activated with 100 unit thrombin and 10% calcium chloride. Growth factor (PDGF-BB, VEGF) concentrations on incubation time were determined by sandwich-ELISA technique. Results: An average of 3ml (via infraorbital venous plexus) to 15ml (via celiac axis) the rat blood could be collected. By using Method 3 (3000 rpm, 4 min and 2500 rpm, 8 min, double centrifugation), around 1.5ml of PRP could be prepared. This method allowed us to concentrate platelet 3.77-fold on average. PDGF-BB concentration (mean, 1942.10 pg/ml after 1 hour incubation) and VEGF concentration (mean, 952.71 pg/ml after 1 hour incubation) in activated PRP were higher than those in untreated blood. Also PDGF-BB showed constant concentration during 4-hour incubation, while VEGF concentration was decreased after 1 hour. Conclusion: Total 11,000 g minute separation and condensation double centrifuge method can produce efficient platelet-rich plasma. Platelet-rich plasma activated with thrombin has showed higher concentrations of growth factors such as PDGF-BB and VEGF, compared to the control group. Platelet-rich plasma model in a rat model was confirmed in this study.

A Study on the Noxious Materials in the Waste Shipped into Solid Recovered Fuel(SRF) Facilities and Their Influence (고형연료(SRF)시설로 반입되는 폐기물의 영향 및 유해성물질 등에 관한 연구)

  • Lee, Seung-Won;Kim, Sang-Hun;Lee, Sang-Seok;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • This study carried out first a component survey on the domestic waste shipped into a waste disposal facility in B city, and then heavy metal analysis of each component according to the SRF standards. Based on this, this study explored the problems with domestic waste and measures to improve them. The results are as follows. The result of the survey of physical components show that paper accounted for the largest proportion with 20.5 %~59.9 %, metals (including batteries) among incombustibles accounted for 0.0~8.3 %, other inorganic substances, glass and ceramics accounted for 0.0~43.7 % and 0.0 %~19.6 % respectively. However, the proportion of coated viny and plastics, which have high lead and cadmium content, was rather high with 2.9 %~30.9 %. This suggests the possibility that actual concentration of lead and cadmium within SRF is likely to be higher. Among the 15 components contained in the waste brought into the waste disposal facility, 10 components (food waste, textiles, vinyl, plastics, wood, rubber and leather, paper, metals, electronic substrates, and nail polish) were analyzed according to assay samples (approximately 0.1 g and 0.3 g). The result of analysis shows that the amount of Cd and Pb detected in coated vinyl for 0.109 g of assay sample was 98.6 mg/kg and 20.6 mg/kg respectively; 117.0 mg/kg and 29.0 mg/kg respectively for 0.313 g of assay sample. This is high contents exceeding the Cd standard. As for wooden component, the amount of Pb was 480.0 mg/kg for 0.3 g of assay sample. This suggests that there always exists the possibility of exceeding the exposure level of heavy metals (Cd and Pb) in SRF as long as coated wood and vinyl plastics with high contents of Pb and Cd are shipped into the waste disposal facility; and the local government and the residents need to work hard to improve the situation including development of the machine to sort electronic substrates and batteries for separate collection of the waste of coated vinyl and plastics within domestic waste.

A Study on the Optical Characteristics According to the Lacquer Drying Conditions for the Conservation of Lacquerwares (칠기문화재 보존을 위한 옻칠 건조조건에 따른 광학적 특성 연구)

  • Hwang, In Sun;Park, Jung Hae;Kim, Soo-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.610-621
    • /
    • 2018
  • In conservation treatment lacquer has been used variously as a restoration material. However, dealing with Lacquer is very difficult as it dried in high humidity that can be harmful to the base materials. Also being natural varnish, dried lacquer layer is very different from the drying condition and the quality of the lacquer. These make difficult to predict the result of drying lacquer. In this study, using the humidity control machine, firstly, the main contents of the two different type of lacquer was experimented. And these lacquers was cured in various conditions. The duration time was checked until totally hardened. After that, obtained lacquer layers was analyzed to understand optical properties. Therefore, this study made a result about the relationship between characteristics of lacquer layer and the hardening condition. As a result, duration time of the Korean lacquer drying which has average 13.4% more urushiol than the Chinese lacquer is recorded a twice or triple decrease over it of the Chinese one. And, in all types of lacquer, the higher humidity makes the faster a pace of lacquer dried. In same lacquer, the shorter the duration time of drying lacquer is much darker and glossier. However, gloss deteriorated in saturated humidity. In humidity lower than RH 70%, lacquer is not hardened in 336 hours. When the layer totally cured through long period more than 30 days, the drying lacquer is appeared high brightness and almost transparent. Thus, in lower than RH 70%, it is hard to obtain durable layer.

Improving Curing Rate and Physical Properties of Korean Dendropanax Lacquer with Thermal and Photo Initiator by Dual Curing (이중경화법을 이용한 열개시제 및 광개시제가 배합된 황칠도료의 경화속도 촉진 및 물성향상 연구)

  • Hwang, Hyeon-Deuk;Moon, Je-Ik;Park, Cho-Hee;Kim, Hyun-Joong;Hwang, Baik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • The Korean Dendropanax lacquer, made from a natural resinous sap from Dendropanax orbifera Lev., was used as a golden and transparent varnish for the traditional artifacts (armor uits, helmets, arrowheads, etc.) to make them be brilliant golden color. The cured film of the acquer has excellent protective properties such as weatherability, water resistance, and nticorrosive. But, one of disadvantages is that takes a long time and much energy to fulfill curing the lacquer. The chemical constituents of the lacquer contained conjugated diene compounds s the photopolymerizable monomers. These monomers easily polymerized in sunlight to form olden-colored, hard-coating films in a short time. Photooxidation may be one of the most mportant reactions in the chemistry of the lacquer. Although the Korean Dendropanax Lacquer hould be dried to a thoroughly dry stage to achieve optimal film properties, curing with elevated emperatures may be required for the protracted curing time at atmospheric temperature. So we ntended to accelerate the curing rate of the lacquer by dual curing of thermal and radiation uring. The effect of thermal initiator on the thermal curing reaction was evaluated by monitoring he changes in double bond peak with FT-IR. Then the curing rate of the lacquer blended with hermal initiator and photoinitiator together was measured during dual curing using a RPT with V spot curing machine. Thermal initiator not only accelerated the curing rate but also improved he physical property. And the curing rate of the Korean Dendropanax lacquer was improved by ual curing method of thermal and UV curing. According to these results, the application area of he Korean Dendropanax lacquer could be expanded to surface coatings for electronic devices uch as mobile phones or electronics.

The Shear Bond Strength of Resin to Electroforming Gold according to the Surface Treatment (표면처리방법에 따른 Electroforming Gold와 레진과의 전단결합강도)

  • You, Byung-Il;Chang, Mun-Suk;Yoon, Tae-Ho;Park, Ju-Mi;Park, Charn-Woon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2006
  • Statement of problem. The success of the bonding between electroforming gold and resin is dependent on the surface-conditioning technique but its effective technique has net been studied widely. Purpose. The purpose of the study was to evaluate the bond strength between the electroforming gold and resin with varying the surface-conditioning technique. Materials and methods. Sixty rectangular shaped metal specimens were made and one side of each specimen were gold hard plated. The sand-blasted specimens were divided into four experimental groups with fifteen specimens in each group and were treated as follows. Group 1: Silicoating (Rocatec, 3M ESPE)+ Sinfony (3M ESPE), Group 2: SR Link+ SR Adoro (Ivoclar Vivadent), Group 3: Tin plating (Microtin, Danville Engineering)+ SR Link+ SR Adoro, Group 4: Tin plating (Micro tin, Danville Engineering)+ Silicoating (Rocatec)+ Sinfony. Shear bond strength at metal-resin interface were measured using universal testing machine. Energy Dispersive x-ray analysis was done and scanning electron microscope images were taken and observed. Results and Conclusion. The following conclusions were drawn. 1. The mean shear bond strength values in order were 11.69MPa (Group 2), 22.35MPa (Group 3), 22.40MPa (Group 1) and 27.71MPa (Group 4). There was no significant difference in Group 1, Group 3 and Group 4(P>0.05). 2. In the EDX line analysis, the Au was detected on the surface of all specimen. $SnO_2$ showed on the surface of Group 2 and $SiO_2$ was detected on the surface of Group 1. 3. Increasing of roughness by sandblasting(Group 2), formation of micro-irregularities and tin crystals by electrolytic tin plating(Group 3) and formation of surface irregularities and $SiO_2$ layer(Group 1,4) were observed in SEM photo. 4. Tin plating(Group 3) and Rocatec treatment(Group 1) showed clinically effective shear bond strength(>20MPa), but when the two surface conditioning method were used together higher bond strength were achieved.