• Title/Summary/Keyword: Hard surface

Search Result 1,048, Processing Time 0.028 seconds

Mechanical Characteristics of Crystalline Carbon Nitride Films Grown by Reactive Sputtering (반응성 스퍼터링으로 성장된 결정성 질화탄소막의 기계적 특성)

  • 이성필;강종봉
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Carbon nitride thin films were deposited by reactive sputtering for the hard coating materials on Si wafer and tool steels. When the nitrogen content of carbon nitride film on tool steel is 33.4%, the mean hardness and elastic modulus are 49.34 GPa and 307.2 GPa respectively. The nitrided or carburised surface acts as the diffusion barrier which shows better adhesion of carbon nitride thin film on the steel surface. To prevent nitrogen diffusion from the film, steel substrate can be saturated by nitrogen forming a Fe$_3$N layer. The desirable structure at the surface after carburising is martensite, but sometimes, due to high carbon content an proeutectoid Fe$_3$C structure may form at the grain boundaries, leaving the overall surface brittle and may cause defects.

A Study on the Evaluation of the Friction and Wear Properties of the Sprayed Coating Layer (용사피막의 마찰.마모 특성 평가에 관한 연구)

  • 김영식;김윤해;김종호;최영국;강태영
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1996
  • In this study, friction and wear properties of flame sprayed specimens and hard Cr plating specimens were tested, and their properties were compared each other in dry and lubrication condition. Ni-Cr powder and steel powder were used as the spray powder and sprayed on the steel(S45C) substrate by flame sprayed method. Each wear surface was observed with SEM after friction and wear test. The friction coefficient of the as-forged steel specimens was the highest among surface treatment specimens, and the other specimens appeared in order as follows ; hard Cr-plating specimens, Ni-Cr powder sprayed specimens, steel powder sprayed specimens. Comparing the wear volumes in dry condition, as forged steel specimens appeared the greatest wear volume, and the other specimens appeared wear volume in order as follows ; Ni-Cr powder sprayed specimens, steel powder sprayed specimens, hard Cr plating specimens. In friction and wear test, the hard Cr plating specimens were worn by the abrasive phenomenon, involving the cracks. The wear volume of steel powder sprayed specimens was lower than that of Ni-Cr powder sprayed specimens. Comparing the tensile strength of both sprayed coating layers, the steel powder sprayed coating layer was better than Ni-Cr powder sprayed coating layer.

  • PDF

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection (알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.221-231
    • /
    • 2023
  • Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.

Synthesis of Hard Coating Solution for Plastic Display Plate (플라스틱 디스플레이 기판용UV 하드 코팅 용액의 합성)

  • Back, Sung Kyun;Jang, Sun Ho;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Poly(urethane acrylate) siloxane oligomers with Interpenetrating polymer netwoked nanoparticles were prepared to synthesize hard coating solution by reaction with diisocyanates. The diisocyanate combined siloxane hard coating solution showed more flexibility than the siloxane solution. In addition, diisocyanate resulted in improvement of curl property and surface hardness in the siloxane solution. Of the used diisocyanates, isophorone diisocyanate and acryloyloxy ethyl diisocyanate were good for UV hard coating solution. This effect will decrease brittleness in the siloxane solution using for plastic display plate.

  • PDF

Numerical Prediction of Flow Field in a Hard Disk Drive (하드 디스크 드라이브 내부의 유동장에 관한 수치적 연구)

  • Lee, Jae-Heon;Back, Y.R.;Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.206-214
    • /
    • 1991
  • Flow field in a hard disk drive has been predicted numerically. Theoretical model was constructed based on a commercially available hard disk drive with 40 Mega byte capacity. Since the gap between disk tip and shroud is not homogeneous in real hard disk drive, three kinds of gap size have been tested as computational model. The discussion has been made on the circumferential velocity, radial velocity, and pressure fields. As a result, the average shear stress on the disk surface was reduced as the gap size decreased. This means that the shroud should be designed compactly to reduce power consumption of the spindle motor.

  • PDF

Particle Generation Trend with Variation of Rest Time and Seek Mode in Hard Disk Drive Operation (하드디스크 드라이브의 슬라이더 구동정지 기간 및 검색조건 변화에 따른 입자 발생 경향)

  • Park, Hee-Sung;Hwang, Jung-Ho;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1056-1061
    • /
    • 2000
  • Particles existing in a hard disk drive are known as a major source of TA(thermal asperity). Researchers have investigated how particles induce the TA phenomena, but have not verified yet the reason why and how particles are generated in a HDD. The objective of this study is to investigate why and how particles are generated, and in what condition, the largest number of particles is generated. The number of particles generated in a HDD was measured over the landing zone after various rest times of slider and during various motions and positions of slider. It is found that the large number of particles was generated when the HDD was turned on after a long rest time of slider and that a few of particles were continuously generated when the slider flied over the disk surface. It is thought that the number of particles generated in a HDD was related to the rest time of slider because the rest time of slider increased stiction, and that there were intermittent contacts between the slider and the disk surface when the slider flied over the disk surface.

Sliding Contact Analysis between Chromium Plated Hydraulic Cylinder Rod and Seals (크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • The hydraulic cylinder seals are used not only to protect leakage of the working fluids but also to prevent incoming of foreign particles into the system. Chromium plating is generally applied to improve corrosion and wear resistance. It has been noticed that sealing surface damage occurs due to the hard foreign/wear particles contained in the hydraulic oil. In this study, a three-bodied sliding contact problem related with a PTFE seal, a spherical particle and chrome-plated steel substrate is modeled to investigate the relations to wear mechanism. Using the nonlinear finite element software, MARC/MENTAT, the deformed shapes, the von Mises and first principal stress distributions with plating thickness were compared. The sealing surface was mainly abraded by hard particles embedded in the seal. The plastic deformation of the steel substrate decreased with thicker plating. Hence it could be more effective to coat the sealing surface of a hydraulic cylinder with a hard material such as TiN, TiC and DLC.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

The Effect of Cervical & Lumbar Range of Motion According to Plantar Surface Compliance (족저 접촉면의 경도가 경추와 요추의 가동범위에 미치는 영향)

  • Cho, Hyun-Rae;Chae, Jung-Byung
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Purposes : The purpose of this study was to measurement the change of cervical and lumbar range of motion according to plantar surface compliance in standing status. Method : The thirty normal adult(15men and 15women) aged between 20 and 35 were assigned to 3 group: first, in bottom piece shoe plantar form not changed the control group, the fore foot which was hard and the rear foot was soft the FHRS Group, the fore foot which was soft and the rear foot was hard the FSRH Group. The cervical and lumbar Range of motion was examined before and after adaptation with corresponding form types Results : This study investigated the change which appears when it will be soft and hard to be. As a result, FHRS group the cervical extension and lumbar flexion increased and the cervical flexion and lumbar extension decreased(p<0.05). In opposition, the FSRH group the cervical flexion and lumbar extension increased and the cervical extension and lumbar flexion decreased(p<0.05).

  • PDF