• Title/Summary/Keyword: Hard Coatings

Search Result 131, Processing Time 0.026 seconds

Characteristic Properties of TiN Thin Films Prepared by DC Magnetron Sputtering Method for Hard Coatings (Hard Coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.660-664
    • /
    • 2008
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness, chemical stability, low friction and good adhesion properties. In this study, we investigated the effect of DC power on the characteristics of TiN thin films deposited on Si and glass substrates by DC magnetron sputtering using TiN target. We made TiN films of 300 nm thickness with various DC powers. The structural properties of films are investigated by x-ray diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester. The rms roughness was measured by atomic forced microscopy (AFM). In the result, TiN films had the smooth surface and exhibited (111) directions with the increase of DC Power. Also, especially in case of 175 W DC power, TiN film exhibited the maximum hardness about 8 GPa, and the critical load near 25.

Characteristic properties of TiN thin films prepared by DC magnetron sputtering method for hard coatings (Hard coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-354
    • /
    • 2007
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness. In this paper, we wanted see how the films properties are changed according to DC power. TiN thin films were deposited by direct current (DC) magnetron sputtering method using TiN compound target on silicon substrates. The films structural properties are examined by X-ray Diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester, nano-stress tester. Especially in DC power of 150 W, the maximum hardness and the minimum residual stress of TiN film exhibited about 25 GPa and 1 GPa, respectively. And also, the critical load of TiN film prepared by magnetron sputtering method were measured over 30 N.

  • PDF

Hard Coatings on Polycarbonate Plate by Sol-Gel Reactions of [3-(methacryloyloxy)propyl]trimethoxysilane (폴리카보네이트 판 위에 [3-(methacryloyloxy)propyl]trimethoxysilane의 졸-겔 반응을 이용한 하드 코팅)

  • Ji, Young Jon;Shin, Young Jae;Shin, Yeon Rok;Kim, Ju Youn;Yoon, Yeo Seong;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.10-15
    • /
    • 2006
  • The hard coatings on the polycarbonate plate were performed with the object of substitution the glass in the car to the polycarbonate plate. In this research, [3-(methacryloyloxy)propyl]trimethoxysilane were used to prepare the coatings by sol-gel process. Butanol was used as a solvent, HCl was used as a catalyst, and AIBN was used as an initiator. Polycarbonate plate was pretreated with PMMA, and final heating of the coating was done at $130^{\circ}C$ for 6 h. Pencil hardness of the coating was 2 H, abrasion resistance and adhesion of the coating were excellent.

  • PDF

Hard Coatings on Polycarbonate Plate by Sol-Gel Process (폴리카보네이트 판 위에 졸-겔 과정을 이용한 하드 코팅)

  • Ji, Young Jon;Kim, Hae Young;Yoon, Yeo Seong;Lee, Seung Woo;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2005
  • The hard coatings on the polycarbonate plate were performed with the object of substitution the glass in the car to the polycarbonate plate. In this research, tetraethyl orthosilicate (TEOS), methyltriethoxysilane (MTES) were used to prepare the coatings by sol-gel process. The optimum conditions and formulation to get the excellent physical properties were determined. The pretreatment condition of polycarbonate plate, the mole ratio of TEOS and MTES, selection of the solvent, the aging time, the amount of acid catalyst, and the number of folds of coating were characterized. Pretreatment with poly(methyl methacrylate) was very effective to increase the adhesion strength. The smooth coating which got the 2 H class in pencil hardness was formed in this research by sol-gel process.

  • PDF

Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation (코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성)

  • Kim, S.M.;Lee, T.H.;Kang, S.J.;Cho, Y.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.209-216
    • /
    • 2011
  • Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

Characteristics of Plasma Electrolytic Oxidation Coatings on Mg-Zn-Y Alloys Prepared by Gas Atomization (가스 분사법으로 제조한 Mg-Zn-Y 합금의 플라즈마 전해 산화 피막 특성에 관한 연구)

  • Chang, Si-Young;Cho, Han-Gyoung;Lee, Du-Hyung;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.372-379
    • /
    • 2007
  • The microstructure, mechanical and electrochemical properties of plasma electrolytic coatings (PEO) coatings on Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn-2.0 wt%Y alloys prepared by gas atomization, followed by compaction at 320 for 10 min under the pressure of 700 MPa and sintering at 380 and 420 respectively for 24 h, were investigated, which was compared with the cast Mg-1.0 wt%Zn alloy. All coatings consisting of MgO and $Mg_2SiO_4$ oxides showed porous and coarse surface features with some volcano top-like pores distributed disorderly and cracks between pores. In particular, the surface of coatings on Mg-1.0 wt%Zn-2.0 wt%Y alloy showed smaller area of pores and cracks compared to the Mg-4.3 wt%Zn-1.0 wt%Y and Mg-1.0 wt%Zn alloys. The cross section micro-hardness of coatings on the gas atomized Mg-Zn-Y alloys was higher than that on the cast Mg-1.0 wt%Zn alloy. Additionally, the coated Mg-1.0 wt%Zn-2.0 wt%Y alloy exhibited the best corrosion resistance in 3.5%NaCl solution. It could be concluded that the addition of Y has a beneficial effect on the formation of protective and hard coatings on Mg alloys by plasma electrolytic oxidation treatment.

Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings (ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구)

  • Wan, Zhixin;Lee, Woo-Jae;Jang, Kyung Su;Choi, Hyun-Jin;Kwon, Se Hun
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.