• Title/Summary/Keyword: Hard Coatings

Search Result 131, Processing Time 0.024 seconds

Wear Property of HOVF WC-CrC-Ni Coating Prepared by Optimal Coating Process (최적 고속화염 용사 코팅 공정기술로 제조된 WC-CrC-Ni 코팅의 마모 특성)

  • Joo, Yunkon;Yoon, Jaehong;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.119-126
    • /
    • 2017
  • WC-CrC-Ni coatings were prepared by nine processes of the Taguchi program with three levels for the four spray parameters: spray distance, flow rates of hydrogen and oxygen, and powder feed rate. The optimal coating process (OCP) was oxygen flow rate of 38 FMR, hydrogen flow rate of 53 FMR, powder feed rate of 25 g/min, and spray distance of 7 inches. Hardness of 1150 Hv and porosity of 1.2 %, were obtained by OCP; these are better results compared with the highest 1033 Hv and the lowest 1.5 % porosity obtained by nine processes of the Taguchi program. Friction coefficient of the WC-CrC-Ni coating decreased from $0.36{\pm}0.07$ at $25^{\circ}C$ to $0.23{\pm}0.07$ at $450^{\circ}C$. These values were smaller than those of the EHC (electrolytic hard chrome) plating at both temperatures due to lubrication from the oxide debris. The wear trace and wear depth of the coating are smaller than those of the EHC at both temperatures. Pitting was not found in the WC-CrC-Ni coating sample, while it did appear in the EHC sample.

Tribological Characteristics of TiC, TiN Coating for PVD Method with Automotive structural Materials (물리적 증착 방법에 의한 TiC, TiN코팅에 따른 자동차 구조용 재료의 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.432-436
    • /
    • 2007
  • We have studied on the tribological characteristics of Plasma Vapour Deposition(PVD) coating method in Automotive Structural Materials. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time with the Falex friction and wear test machine. It was improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that it is improved because of excellence of the anti-wear, the extreme pressure properties and tile heat stability.

  • PDF

Principle of Oblique Angle Deposition and Its Application to Hard Coatings (빗각 증착 기술의 원리와 경질피막에의 응용)

  • Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.133-133
    • /
    • 2018
  • 증착(Vapor Deposition)이란 어떤 물질을 증기화 시켜 기판에 응축시키는 공정을 말하며 물리증착(Physical Vapor Deposition; PVD)과 화학증착(Chemical Vapor Deposition)으로 대별된다. 빗각 증착 (Oblique Angle Deposition; OAD) 기술은 입사 증기가 기판에 비스듬히 입사하도록 조절하여 코팅하는 물리증착 기술의 하나로 피막의 조직을 다양하게 제어할 수 있으며 따라서 피막의 특성 제어가 가능한 기술이다. 지금까지 빗각증착은 증기의 산란이 발생하지 않는 $10^{-5}$ 토르 이하의 고진공에서 이루어져 왔다. 본 연구에서는 플라즈마를 이용한 스퍼터링과 음극 아크 증착을 이용하여 질화티타늄(TiN; Titanium Nitride) 박막을 제조하고 그 특성을 평가하였다. TiN 박막은 내마모성 향상 및 장식용 코팅에 널리 이용되고 있다. 박막 제조시 특히 바이어스 전압을 박막 조직의 기울기를 제어하는 수단으로 이용하였고 빗각과 바이어스 전압을 이용하여 다층박막의 조직제어에 활용하였다. 박막의 미세구조와 방위, 경도를 SEM, XRD, Nano Indenter를 이용하여 측정하였고 반사율 및 박막의 조도는 Spectrophotometer와 조도 측정기를 이용하여 측정하였다. 기울어진 조직 및 V형태의 조직이 단층 및 다층의 피막에서 명확하게 관찰됨을 확인하였고 특히 마지막 층 제조시 바이어스 전압을 인가할 경우 탄성계수는 크게 변하지 않는 상황에서 경도가 증가함을 확인하였다.

  • PDF

Analysis of Properties Multi-Layered TiN/CrN Thin Films Deposited by AIP Method (AIP법으로 증착된 TiN/CrN 다층박막의 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Heo, Ki-Bok;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.405-410
    • /
    • 2018
  • TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.

Transparent and Hard PTFE-like Coatings by RF magnetron Sputtering of PTFE Polymer Target (PTFE 폴리머 타겟을 사용한 RF 마그네트론 스퍼터링으로 얻어진 투명, 고경도 PTFE 유사 코팅)

  • Song, Yeong-Sik;Kim, Jong-Ryeol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.98.1-98.1
    • /
    • 2016
  • PTFE (Polytetrafluoroethylene) 는 벌크 형태는 물론 박막으로도 독특한 특성을 나타내는 물질이다. 매우 낮은 마찰계수, 발수표면특성, 화학적 비반응성은 다양한 방면의 적용이 가능하게 한다. 두께 $1-2{\mu}m$ 이나 50 nm 이하의 박막의 형태로서 발수 특성은 스퍼터링 조건에 따라서는 벌크 PTFE의 특성보다 뛰어나다. 순수한 PTFE 타겟을 사용하여 얇은 PTFE 막 증착을 위해 RF (radio-frequency) 스퍼터링을 하였다. 스퍼터 타겟 건 파워, 공정 압력, 그리고 기판 스테이지와 Si wafer 나 다양한 시편에 인가되는 RF 바이어스 (bias) 등과 같은 스퍼터링 변수의 변화가 가능하다. 공정 변수에 따라서 RF 스퍼터링에 의한 순수한 PTFE 박막과 바이어스가 인가된 유사 PTFE 박막을 비교하여 탐구하였다. 스퍼터링에 의한 PTFE 코팅은 접촉각이 100도 또는 그이상의 초발수성을 나타내는 장점을 갖고 있고, 90% 이상의 높은 투과도를 나타낸다. PTFE 타겟을 사용한 종래의 일반적인 스퍼터링에 의하여, 일예로 실리콘 웨이퍼상에 증착된 코팅막은 낮은 경도와 기판과의 밀착력이 좋지 않은 문제를 갖고 있다. 높은 에너지 환경에서 만들어진 PTFE 코팅은 기존의 스퍼터링 방식으로 만들어진 코팅에 비해 다른 특성을 나타낸다. PTFE 막의 경도와 밀착력을 높이고자 bias를 인가한 RF 스퍼터링을 시도하였다. 코팅 접촉각, 투과도, 나노인덴터에 의한 경도, 그리고 스크래치 테스트에 의한 코팅막의 밀착력을 살펴보았다. PTFE 폴리머 타겟을 사용한 RF 스퍼터링으로 만들어진 고경도 PTFE 유사 코팅의 경도 변화 기구를 고찰하였다.

  • PDF

Experimental Studies of Wrinkle Formation in the UV Cured Coating Around Film-Substrate Insterface (자외선 경화코팅 필름-기질 계면에서의 주름현상에 대한 연구)

  • Hong, Jin Hu;Lee, Haeng U
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.7
    • /
    • pp.480-484
    • /
    • 1994
  • The durability of UV radiation cured coatings near the film-substrate interface has been studied. Particularly, the influence of the reactive diluent and oligomer in the UV-cured urethane acrylate formulation on the wrinkle formation of coating films was investigated. Results showed that wrinkle resistance increases when DMTA loss peaks of coating network are broad and has shoulder. When modified aromatic urethane acrylate oligomer is used to replace the aliphatic one, resulting cured network provides coating film of high hardness and flexibility. Therefore, the high values of loss modulus as low temperature are considered to be the main reason for wrinkle resistance improvements. The SEM and instron data support above conclusion.

  • PDF

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process (최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성)

  • Song, Ki O;Cho, Tong Yul;Yoon, Jae Hong;Fang, W.;Youn, Seok Jo;Youn, Kuk Tae;Suh, Chang Hee;Hwang, Soon Young;Ha, Sung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.