• 제목/요약/키워드: Harbin

검색결과 677건 처리시간 0.02초

Investigation on the failure mechanism of steel-concrete steel composite beam

  • Zou, Guang P.;Xia, Pei X.;Shen, Xin H.;Wang, Peng
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1183-1191
    • /
    • 2016
  • The internal crack propagation, the failure mode and ultimate load bearing capacity of the steel-concrete-steel composite beam under the four-point-bend loading is investigated by the numerical simulation. The results of load - displacement curve and failure mode are in good agreement with experiment. In order to study the failure mechanism, the composite beam has been modeled, which part interface interaction between steel and concrete is considered. The results indicate that there are two failure modes: (a) When the strength of the interface is lower than that of the concrete, failure happens at the interface of steel and concrete; (b) When the strength of the interface is higher than that of the concrete, the failure modes is cohesion failure, i.e., and concrete are stripped because of the shear cracks at concrete edge.

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

Ship information system: overview and research trends

  • Liu, Sheng;Xing, Bowen;Li, Bing;Gu, Mingming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.670-684
    • /
    • 2014
  • Ship Information Systems (SISs) have been one of the main research focuses in ship design and become a multidisciplinary area. With these growing research trends, it is important to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the SIS and its different forms are introduced and discussed. The beginning of this paper discusses the history and evolution of SIS. The next part of this paper focuses on different fields and research areas such as networking technology, information fusion, information decision, message display, ship control in real-time SISs. A Semi-Physical Simulation Platform (SPSIM) designed for SIS research and its running effect through a new Fuzzy-PID fusion algorithm are introduced in this paper then. A brief literature survey and possible future direction concerning each topic is included.

Consensus of Leader-Follower Multi-Vehicle System

  • Zhao, Enjiao;Chao, Tao;Wang, Songyan;Yang, Ming
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.522-534
    • /
    • 2017
  • According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a stationary target and a moving target, respectively.

Novel Interleaved Single-Stage AC/DC Converter with a High Power Factor and High Efficiency

  • Wang, Yijie;Wang, Wei;Zhang, Xiangjun;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.245-255
    • /
    • 2011
  • A novel single-stage AC/DC converter with the soft-switching characteristic based on interleaving technology and an LLC topology is proposed here. The converter is integrated by an interleaved cell and an LLC cell. Because the components of the system are reduced as a result of integrating, the cost decreases. Since interleaving technology is adopted, the converter can work in a high voltage input state. The LLC topology chosen here ensures that the switches on the primary side work in the ZVS condition and that the diodes on the secondary side work in the ZCS condition, which decreases the switching loss of the system. A theoretical analysis and the design procedures of the proposed converter are proposed and discussed in detail. Simulations and experimental studies with a 100W prototype are done to prove the analysis.

Synchronous Periodic Frequency Modulation Based on Interleaving Technique to Reduce PWM Vibration Noise

  • Zhang, Wentao;Xu, Yongxiang;Ren, Jingwei;Su, Jianyong;Zou, Jibin
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1515-1526
    • /
    • 2019
  • Ear-piercing high-frequency noise from electromagnetic vibrations in motors has become unacceptable in sensitive environments, due to the application of pulse width modulation (PWM) and in consideration of switching losses. This paper proposed a synchronous periodic frequency modulation (SPFM) method based on the interleaving technique for paralleled three-phase voltage source inverters (VSIs) to eliminate PWM vibration noise. The proposed SPFM technique is able to effectively remove unpleasant high-frequency vibration noise as well as acoustic noise more effectively than the conventional periodic carrier frequency modulation (PCFM) and interleaving technique. It completely eliminates the vibration noise near odd-order carrier frequencies and reduces the PWM vibration noise near even-order carrier frequencies depending on the switching frequency variation range. Furthermore, the SPFM method is simple to implement and does not employ additional circuits in the drive system. Finally, the effectiveness of the proposed method has been confirmed by detailed experimental results.

Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells

  • Li, Haichao;Pang, Fuzhen;Du, Yuan;Gao, Cong
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.163-180
    • /
    • 2019
  • A semi analytical method is employed to analyze free vibration characteristics of uniform and stepped functionally graded circular cylindrical shells under complex boundary conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement functions are handled by unified Jacobi polynomials and Fourier series. In order to obtain continuous conditions and satisfy complex boundary conditions, the penalty method about spring technique is adopted. The solutions about free vibration behavior of functionally graded circular cylindrical shells were obtained by approach of Rayleigh-Ritz. To confirm the dependability and validity of present approach, numerical verifications and convergence studies are conducted on functionally graded cylindrical shells under various influencing factors such as boundaries, spring parameters et al. The present method apparently has rapid convergence ability and excellent stability, and the results of the paper are closely agreed with those obtained by FEM and published literatures.

Development of analysis program for direct containment heating

  • Jiang, Herui;Shen, Geyu;Meng, Zhaoming;Li, Wenzhe;Yan, Ruihao
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3130-3139
    • /
    • 2022
  • Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study, a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal, metal oxidation reaction, debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure, temperature, and hydrogen production in containment well, and for most comparisons the relative errors can be maintained within 20%. Among them, the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.

Hydrodynamic characteristics of a fixed semi-submersible platform interacting with incident waves by fully nonlinear method

  • Zhang, Zi-Lin;Yuan, Hong-Tao;Sun, Shi-Li;Ren, Hui-Long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.526-544
    • /
    • 2021
  • Based on the potential flow theory, a fully nonlinear numerical procedure is developed with boundary element method to analyze the interaction between a fixed semi-submersible platform and incident waves in open water. The incident wave is separated from the scattered wave under fully nonlinear boundary conditions. The mixed Euler-Lagrangian method is used to capture the position of the disturbed wave surface in local coordinate systems. The wave forces exerted on an inverted conical frustum are used to ensure the accuracy of the present method and good agreements with published results are obtained. The hydrodynamic characteristics of the semi-submersible platform interacting with regular waves are analyzed. Pressure distribution with time and space, tension and compression of the platform under wave action are investigated. 3D behaviors of wave run-ups are predicted. Strong nonlinear phenomena such as wave upwelling and wave interference are observed and analyzed.

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.