• 제목/요약/키워드: Haptic System

검색결과 274건 처리시간 0.03초

실감 가상시작을 위한 햅틱 다이얼 시스템 (A Haptic Dial System for Virtual Prototyping)

  • 한만철;김래현;신상균;박세형;조현철
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 3부
    • /
    • pp.25-29
    • /
    • 2008
  • 기존의 가상 시작품은 3D 그래픽스를 이용하여 모델링된 제품 영상을 제공하였다. 이러한 가상 시작품은 단지 전통적인 입력 장치인 키보드와 마우스를 이용하여 다룰 수 있을 뿐, 조작부를 사용자가 직접 만져보고 조작하는 것은 불가능했다. 본 논문에서는 사용자가 실제 제품을 조작하는 듯한 느낌을 얻을 수 있도록 하는, 실감가상시작을 위한 햅틱 다이얼을 시스템을 제안한다. 햅틱 다이얼은 모터를 통해 사용자가 실제의 기계적인 다이얼과 유사한 감을 느낄 수 있도록 제어된다. 또한, 사용자가 다이얼을 조작하는 정보는 시스템에 입력되어 가상시작품이 작동하는 모습을 화면상에서 확인할 수 있도록 하였다. 이러한 실감 가상시작 시스템은 사용자 피드백을 통해, 설계 프로세스 초기 단계에서부터 제품 인터페이스를 디자인할 수 있도록 도움을 줄 것이다.

  • PDF

A Heuristic Rule for the Performance Improvement in Time Domain Passivity Control of Haptic Interfaces

  • Kim, Yoon-Sang;Blake Hannaford
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.212-216
    • /
    • 2002
  • A practical issue is studied to improve the performance of a new energy based method of achieving stable, high performance haptic interface control. The issue is related to resetting the amount of energy accumulated in the Passivity Observer for faster operation. A heuristic method is derived and experimentally tested for the resetting and it is shown to help the PC to operate sooner when the system gets active. Experimental results are presented for the “Excalibur” haptic device.

On the Design Method of a Haptic Interface Controller with Virtual Coupling

  • Kim, Keehoon;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.25.5-25
    • /
    • 2001
  • A haptic interface can be a passive system with virtual coupling as a filter virtual coupling has been designed for satisfying passivity. However, it affects transparency of haptic interface as well as stability. This paper suggests new design criterion of a haptic interface controller by considering transparency. As a result, sampling time and the range of impedance or admittance should be considered as well as virtual coupling for desired performance of hapticdisplay. And experiments show that the suggested design criterion can be applied successfully for desired performance.

  • PDF

Direct Control of a Passive Haptic Device Based on Passive Force Manipulability Ellipsoid Analysis

  • Changhyun Cho;Kim, Munsang;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.238-246
    • /
    • 2004
  • In displaying a virtual wall using a passive haptic device equipped with passive actuators such as electric brakes, unsmooth motion frequently occurs. This undesirable behavior is attributed to time delay due to slowness in the virtual environment update and force approximation due to the inability of a brake to generate torque in arbitrary directions. In this paper a new control scheme called direct control is proposed to achieve smooth display on the wall-following task with a passive haptic device. In direct control, brakes are controlled so that the normal component of a resultant force at the end-effector vanishes, based on the force analysis at the end-effector of the passive haptic device using the passive FME (Force Manipulability Ellipsoid). Various experiments have been conducted to verify the validity of the direct control scheme with a 2-link passive haptic system.

가상현실을 위한 다중 접촉 실시간 햅틱 랜더링 (Real-Time Haptic Rendering for Multi-contact Interaction with Virtual Environment)

  • 이경노;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.663-671
    • /
    • 2008
  • This paper presents a real-time haptic rendering method for multi-contact interaction with virtual environments. Haptic systems often employ physics-based deformation models such as finite-element models and mass-spring models which demand heavy computational overhead. The haptic system can be designed to have two sampling times, T and JT, for the haptic loop and the graphic loop, respectively. A multi-rate output-estimation with an exponential forgetting factor is proposed to implement real-time haptic rendering for the haptic systems with two sampling rates. The computational burden of the output-estimation increases rapidly as the number of contact points increases. To reduce the computation of the estimation, the multi-rate output-estimation with reduced parameters is developed in this paper. Performance of the new output-estimation with reduced parameters is compared with the original output-estimation with full parameters and an exponential forgetting factor. Estimated outputs are computed from the estimated input-output model at a high rate, and trace the analytical outputs computed from the deformation model. The performance is demonstrated by simulation with a linear tensor-mass model.

비 동기화된 촉각과 영상 시간지연이 원격조종로봇에 미치는 영향과 성능 향상을 위한 조언 (The Effect of Asynchronous Haptic and Video Feedback on Teleoperation and a Comment for Improving the Performance)

  • 김혁;유지환
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.156-160
    • /
    • 2012
  • In this paper, we investigate the effect of asynchronous haptic and video feedback on the performance of teleoperation. To analyze the effect, a tele-manipulation experiment is specially designed, which operator moves square objects from one place to another place by using master/slave telerobotic system. Task completion time and total number of falling of the object are used for evaluating the performance. Subjective study was conducted with 10 subjects in 16 different combinations of video and haptic feedback while participants didn't have any prior information about the amount of each delay. Initially we assume that synchronized haptic and video feedback would give best performance. However as a result, we found that the accuracy was increased when haptic and video feedback was synchronized, and the completion time was decreased when one of the feedback (either haptic or video) was decreased. Another interesting fact that we found in this experiment is that it showed even better accuracy when haptic information arrives little bit earlier than video information, than the case when those are synchronized.

원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링 (Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation)

  • 김정식;김정
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 3부
    • /
    • pp.19-24
    • /
    • 2008
  • 본 논문은 원격제어(teleoperation)시스템에서 카메라로부터의 실시간 영상정보를 이용하여 조작대상이 되는 물체의 물리기반모델(physically-based model)을 만들고 이를 기반으로한 햅틱 렌더링 알고리즘의 개발에 관한 것이다. CCD 카메라를 통한 영상정보와 물성치(mechanical properties)를 이용하여 변형체(deformable object)의 물리적 기반 모델이 구현되고 햅틱장치로 조종되는 평면 로봇(planar robot)을 제어하여 변형체에 변형을 가하면 구현된 물리적 모델에 의해 햅틱 피드백을 위한 반력값이 계산된다. 스네이크 알고리즘을 이 용하여 영상정보로부터 변형체의 외형정보(geometry information)를 추출하며, 변형체의 경계(boundary)에서의 반력값을 계산하기 위해 경계요소법(boundary element method)을 사용한다. 제안된 햅틱 렌더링 알고리즘을 이용하여 원격조작간에 힘센서를 사용하지 않고 사용자에게 햅틱 피드백을 제공할 수 있다.

  • PDF

유한요소 해석을 이용한 초탄성체 햅틱 피드백 연구 (Hyper-elastic Model Haptic Feedback Using Finite Element Analysis)

  • 박승현;김진현
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.260-265
    • /
    • 2022
  • In this study, we establish hyper-elastic haptic feedback in a virtual environment using finite element analysis techniques and develop a Force Torque (FT) sensor utilization method for application in tele-operation environments. In general, regarding haptic feedback data, in a tele-operation environment, the user is provided with feedback according to the measured force data when the model is inserted through an FT sensor. Conversely, in a virtual environment, the press-fitting model can be expressed through the spring-damper system rather than an FT sensor to provide feedback. However, unlike rigid and the elastic bodies, the hyper-elastic body represented by a spring-damper system in a virtual environment is a simple impedance model using stiffness and damping coefficients; it is limited in terms of providing actual feedback. Thus, in this study, haptic feedback was implemented using the data obtained from POD-RBF analysis results during hyper-elastic press-fitting experiments. The haptic feedback mechanism developed in this study was verified by comparing the FT sensor feedback data measured and calculated through hyper-elastic press-fitting experiments with spring-damper feedback data. Subsequently, the POD-RBF analysis feedback was compared and evaluated against the feedback mechanism of each environment through the test subject, and the similarities between the POD-RBF analysis feedback and FT sensor data feedback were verified.