• Title/Summary/Keyword: Haptic Interaction

Search Result 114, Processing Time 0.025 seconds

Framework of a Training Simulator for the Accident Response of Large-scale Facilities (대형 기계 설비의 사고 대응을 위한 훈련 시뮬레이터 프레임워크)

  • Cha, Moohyun;Huh, Young-Cheol;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.423-433
    • /
    • 2014
  • For the proper decision making and responsibility enhancement for an unexpected accident in large-scale facilities, it is important to train operators or first responders to minimize potential human errors and consequences resulted from them. Simulation technologies, including human-computer interaction and virtual reality, enables personnel to participate in simulated hazardous situations with a safe, interactive, repetitive way to perform these training activities. For the development of accident response training simulator, it is necessary to define components comprising the simulator and to integrate them for the given training purpose. In this paper, we analyze requirements of the training simulator, derive key components, and design the training simulator. Based on the design, we developed a prototype training simulator and verified the simulator through experiments.

Research and development of haptic simulator for Dental education using Virtual reality and User motion

  • Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.114-120
    • /
    • 2018
  • The purpose of this paper is to develop simulations that can be used for virtual education in dentistry. This development goal is to allow dental students to learn the necessary surgical techniques at the point of their choice, not going into the operating room, away from time, space, and physical limits. In this paper configuration, the optimization method is applied convergent, and when the operation of the VR contents is performed, the content data is extracted from the interaction analysis formed in the VR engine, and the data is processed by the content algorithm. It also computes events and dental operations generated within the 3D engine programming and generates corresponding events through data processing according to the input signal. The visualization information is output to the HMD using the rendering information. In addition, the operating room environment was constructed by studying lighting and material for actual operating room environment. We applied the ratio of actual space to virtual space and the ratio between character and actual person to create a spatial composition at a similar rate to actual space.

posVibEditor: Authoring Tool for Designing Vibrotactile Patterns in Mobile Devices (posVibEditor: 모바일 기기에서 진동촉감 패턴의 디자인 저작 도구)

  • Ryu, Jong-Hyun;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.256-261
    • /
    • 2008
  • We developed an authoring tool for designing vibrotactile patterns quickly and easily by using the drag-and-drop paradigm in mobile devices. Designed vibrotactile patterns are registered into a data pool in the XML format, improving the reusability and extensibility of vibrotactile patterns. A multi-channel timeline interface is also incorporated to provide time-synchronized pattern editing for multiple vibration patterns (for multiple vibration actuators). In addition, an internal vibration player is embedded in the authoring tool in order to evaluate the patterns on the spot. A transform function for perceptually transparent vibration rendering can also be set in the editor. Although the authoring tool was developed for mobile devices, it can be used for other applications such as haptic interaction m virtual reality.

  • PDF

Virtual Science Lab - Sensible Human Body Learning System (가상 과학 실험실 - 체감형 인체 구조 학습 시스템)

  • Kim, Ki-Min;Kim, Jae-Il;Kim, Seok-Yeol;Park, Jin-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2078-2079
    • /
    • 2009
  • This research suggests the framework for human body learning system using various forms of bidirectional interfaces. The existing systems mostly use the limited and unidirectional methods which are merely focused on the visual information. Our system provides more realistic visual information using 3D organ models from the real human body. Also we combine the haptic and augmented reality techniques into our system for wider range of interaction means. Through this research, we aim to overcome the limitation of existing science education systems and explore the effective scheme to fuse the real and virtual educational environment into one.

  • PDF

A Measurement System for 3D Hand-Drawn Gesture with a PHANToMTM Device

  • Ko, Seong-Young;Bang, Won-Chul;Kim, Sang-Youn
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.347-358
    • /
    • 2010
  • This paper presents a measurement system for 3D hand-drawn gesture motion. Many pen-type input devices with Inertial Measurement Units (IMU) have been developed to estimate 3D hand-drawn gesture using the measured acceleration and/or the angular velocity of the device. The crucial procedure in developing these devices is to measure and to analyze their motion or trajectory. In order to verify the trajectory estimated by an IMU-based input device, it is necessary to compare the estimated trajectory to the real trajectory. For measuring the real trajectory of the pen-type device, a PHANToMTM haptic device is utilized because it allows us to measure the 3D motion of the object in real-time. Even though the PHANToMTM measures the position of the hand gesture well, poor initialization may produce a large amount of error. Therefore, this paper proposes a calibration method which can minimize measurement errors.

Incorporating "Kansei Engineering" Approach on Traditional Textiles - A Proposed Method for Identifying Multi-Sensorial Experiences on the Kansei Attributes of Traditional Textiles -

  • Syarief, Achmad
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.1
    • /
    • pp.121-127
    • /
    • 2012
  • When people are asked to described certain textiles, they frequently refer to the expressions of its properties such as attractiveness, uniqueness, shininess, robustness, comfortability, and so on. It shows how senses play important role in it. Human employs their senses when interacting with textiles, most notably visual and tactile/ haptic to absorb its expressive properties. Yet, our sensorial experiences may amplify when interacting with those of traditional textiles, such as batik, as we can entice sensations when seeing its motifs and patterns, smelling its materials, and touching its surfaces. The multi-sensorial importance of seeing, smelling, and touching in the interaction with and experience of textiles suggests that one should address senses in a systematic way when evaluating users' perception on traditional textiles. To address this issue, the paper proposes the incorporation of Kansei Engineering (KE) approach for identifying multi-sensorial experiences on the expressive properties of traditional textiles, using batik as a case of study. KE approach address person's psychological understanding when observing things in order to analyze and study the inherent relationship between person's perceptual knowledge and objects evaluated. This paper outlines the use of KE approach in correlating sensorial perceptions when experience with traditional textiles and ultimately expose users' preferences toward them. Background of KE approach on textiles will be explored and its application for the multi-sensorial investigation of traditional textiles will be discussed.

Research and development of haptic simulator for Dental education using Virtual reality and User motion

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.52-57
    • /
    • 2018
  • The purpose of this paper is to develop simulations that can be used for virtual education in dentistry. The virtual education to be developed will be developed with clinical training and actual case data of tooth extraction. This development goal is to allow dental students to learn the necessary surgical techniques at the point of their choice, not going into the operating room, away from time, space, and physical limits. I want to develop content using VR. Oculus Rift HMD, Optical Based Outside-in Tracking System, Oculus Touch Motion Controller, and Headset as Input / Output Device. In this configuration, the optimization method is applied convergent, and when the operation of the VR contents is performed, the content data is extracted from the interaction analysis formed in the VR engine, and the data is processed by the content algorithm. It also computes events and dental operations generated within the 3D engine programming and generates corresponding events through data processing according to the input signal. The visualization information is output to the HMD using the rendering information. In addition, the operating room environment was constructed by studying lighting and material for actual operating room environment. We applied the ratio of actual space to virtual space and the ratio between character and actual person to create a spatial composition at a similar rate to actual space.

A Study on the Shift Register-Based Multi Channel Ultrasonic Focusing Delay Control Method using a CPLD for Ultrasonic Tactile Implementation (초음파 촉각 구현을 위한 CPLD를 사용한 Shift Register기반 다채널 초음파 집속 지연 제어 방법에 대한 연구)

  • Shin, Duck-Shick;Park, Jun-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2022
  • This paper proposes a shift-register-based multichannel ultrasonic focusing delay control method using a complex programmable logic device (CPLD) for a high resolution of ultrasonic focusing system. The proposed method can achieve the ultrasonic focusing through the delay control of driving signals of each ultrasonic transducer of an ultrasonic array. The delay of the driving signals of all ultrasonic channels can be controlled by setting the shift register in the CPLD. The experiment verified that the frequency of the clock used for the delay control increased, the error of the focusing point decreased, and the diameter of the focusing point decreased as the length of the shift register in the proposed method. The proposed method used only one CPLD for ultrasonic focusing and did not require to use complex hardware circuits. Therefore, the resources required for the design of an ultrasonic focusing system could be reduced. The proposed method can be applied to the fields of human computer interaction (HCI), virtual reality (VR) and augmented reality (AR).

Reconstruction of the Lost Hair Depth for 3D Human Actor Modeling (3차원 배우 모델링을 위한 깊이 영상의 손실된 머리카락 영역 복원)

  • Cho, Ji-Ho;Chang, In-Yeop;Lee, Kwan-H.
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • In this paper, we propose a reconstruction technique of the lost hair region for 3D human actor modeling. An active depth sensor system can simultaneously capture both color and geometry information of any objects in real-time. However, it cannot acquire some regions whose surfaces are shiny and dark. Therefore, to get a natural 3D human model, the lost region in depth image should be recovered, especially human hair region. The recovery is performed using both color and depth images. We find out the hair region using color image first. After the boundary of hair region is estimated, the inside of hair region is estimated using an interpolation technique and closing operation. A 3D mesh model is generated after performing a series of operations including adaptive sampling, triangulation, mesh smoothing, and texture mapping. The proposed method can generate recovered 3D mesh stream automatically. The final 3D human model allows the user view interaction or haptic interaction in realistic broadcasting system.

  • PDF

Design and Experiments of Pneumatic Tactile Display for Haptic Interaction (햅틱 인터렉션을 위한 공기촉감 제시장치의 개발 및 실험 - 손끝 부착 형 공기촉감 제시장치의 개발 및 심리 물리학적 실험 -)

  • Kim, Yeong-Mi;Oakley, Ian;Ryu, Je-Ha
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.19-26
    • /
    • 2006
  • This paper presents a novel pneumatic tactile display that can deliver some useful information. The air-jet display forms 5 by 5 arrays and features air nozzles with an external diameter of 2.4mm and internal diameter of 1.5 mm. In comparison with other tactile displays such as vibrotactile, there is little concrete psychophysical data relating to pneumatic displays, a fact which hinders their adoption. This paper addresses this challenge, and presents brief psychophysical studies examining localization rate, the two point threshold, stimulus intensity and the temporal threshold of cues produced by pneumatic air jets. Two groups of subjects were used in these studies, subsequently termed groups A and B. Both were comprised of eight participants. In the case of localization study we obtained 58.13% and 85.9% of localization rates each for dense display and sparse display. Two-points threshold test showed the length of gap between two air-jet stimuli which subjects can detect. However, it was formidable to find out precise temporal resolution of PTI owing to the limitation of capability of the pneumatic valves. Lastly, the results of stimulus intensity study suggest that by varying the size of a pneumatically created tactile stimulus, we can effectively vary its perceived magnitude.

  • PDF