• Title/Summary/Keyword: Haptic Feedback Surgery Simulator

Search Result 2, Processing Time 0.016 seconds

A Patellar Surgery Haptic Simulator for Veterinary Training (수의학 훈련을 위한 슬개골 수술 햅틱 시뮬레이터)

  • Lee, Jun;Eom, KiDong;Seo, Anna
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Patella surgery of small animal is an important veterinary surgery that the veterinarian should saw and drill the dislocated patella in order to fix the corrected position. However, the animal protection laws restrict the veterinarian students' chances for the practice and training of the patella surgery. This paper proposed a haptic based patella surgery simulator for veterinarian students. We modelled force feedback methods in order to provide best similar haptic feedbacks to the real drilling feedbacks in the patella surgery. The proposed patella drilling simulator provides haptic interface as a drill and a workbench in order to provide best surgery experiences. We conducted the performance evaluations in order to prove usability of the proposed patella surgery interface.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.