• 제목/요약/키워드: Haptic Feedback

검색결과 155건 처리시간 0.03초

Development of Tele-operation system Based on the Haptic Interface

  • Lee, Jong-bae;Chung, Joong-ki;Moon, Chan-woo;Lim, Joon-hong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.236-239
    • /
    • 2003
  • In this paper, we investigate the issues for the design and implementation of tele-operation system based on the haptic interface. Here, the 3-DOF haptic device and the x-y-z stage are employed as master controller and slave system respectively. In this master-slave system, the force feedback algorithm, the modeling of virtual environments and the control method of x-y-z stage are proposed. In this paper, inernet network is used for data communication between master and slave. We construct virtual environment of the real convex surface from the force-feedback in controlling the X-Y-Z stage and getting the force applied by the 3-DOF haptic device.

  • PDF

ER 유체를 이용한 3 자유도 햅틱 장치의 힘 반향 제어 (Force Feedback Control of 3 DOF Haptic Device Utilizing Electrorheological Fluid)

  • 한영민;강필순;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.213-216
    • /
    • 2005
  • This paper presents force feedback control performance of a 3DOF haptic device that can be used for minimally invasive surgery (MIS). As a first step, a 3DOF electrorheological (ER) joint is designed using a spherical mechanism. And it is optimized based on the mathematical torque modeling. Subsequently, the master haptic device is manufactured by the spherical joint. In order to achieve desired force trajectories, model based compensation strategy is adopted for the ER master. Therefore, Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. A compensation strategy is then formulated through the model inversion to achieve desired force at the ER master. Tracking control performances for sinusoidal force trajectory are presented, and their tracking errors are evaluated.

  • PDF

Virtual Reality Game Modeling for a Haptic Jacket

  • Bae, Hee-Jung;Jang, Byung-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.882-885
    • /
    • 2003
  • In this paper, we describe a haptic jacket and wheel as a haptic interface to enhance VR game realism. Building upon the VR game system using this devices, our haptic interface technique allows the user to intuitive interact on game contents, and then to sense the game event properties such as walking, attacking, driving and fire in a natural way. In addition, we extended the initial haptic model to support haptic decoration and dynamic interactions due to the added game event in a real time display. An application example presented here is a VR Dino-Attack game. This game supports interactions among dynamic and our intuitive haptic interface. Modeling physic interactions involves precise collision detection, real-time force computation, and high control-loop bandwidth.

  • PDF

촉각 정보를 이용한 이동로봇의 원격제어 (Remote Control of a Mobile Robot using Haptic Device)

  • 권용태;강희준;노영식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.737-741
    • /
    • 2004
  • A mobile robot system is developed which is remotely controlled by a haptic master called ‘PHANTOM’. The mobile robot has 4 ultrasonic sensors and single CCD camera which detects the distance from a mobile robot to obstacles in the environment and sends this information to a haptic master. For more convenient remote control, haptic rendering process is performed like viscosity forces and obstacle avoidance forces. In order to show the effectiveness of the developed system, we experiment that the mobile robot runs through the maze and the time is checked to complete the path of the maze with/without the haptic information. Through this repeated experiments, haptic information proves to be useful for remote control of a mobile robot.

  • PDF

벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법 (A Haptic Rendering Technique for 3D Objects with Vector Field)

  • 김래현;박세형
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권4호
    • /
    • pp.216-222
    • /
    • 2006
  • 벡터 필드는 공간상에 눈으로 보이지 않거나 표현하기 어려운 데이타의 진행을 이해 하기 쉽게 표현하는데 많이 사용되고 있다. 예를 들면, 바람이나 물의 진행 방향 및 세기, 온도의 전도, 전자기파 등의 과학적인 데이타의 시각화에 사용되고 있다. 본 연구에서는 3차원 모델상에 존재하는 벡터 필드에 대해 시각적인 정보와 더불어 촉각을 통한 직관적인 인식을 제공하기 위한 햅틱 렌더링 기술을 개발하였다. 이를 구현하기 위해 벡터 필드를 햅틱 인터페이스에 적합하게 모델링 하는 기법과 시뮬레이션 기술을 개발하였다. 이를 바탕으로 일상생활에 사용되는 지도에서 사용자가 원하는 목적지로 햅틱 인터페이스를 통해 안내해 주는 햅틱 맵과 해류의 흐름을 보여주는 시각적인 벡터 필드를 사용자가 촉각을 통해 직관적으로 느낄 수 있도록 해주는 시스템에 적용하였다. 앞으로 교육, 훈련, 그리고 오락 등 다양한 분야에서 이러한 햅틱 벡터 필드 기술이 사용될 수 있을 것으로 기대된다.

복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어 (Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot)

  • 윤성민;김원재;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

몰입형 가상교육을 위한 입력장치 (Input Device for Immersive Virtual Education)

  • 정구철;임성민;김상연
    • 한국실천공학교육학회논문지
    • /
    • 제5권1호
    • /
    • pp.34-39
    • /
    • 2013
  • 본 연구에서는 사용자에게 가상환경에 존재하는 교육컨텐츠와 자연스럽게 안터랙션 할 뿐 아니라 인터랙션 양에 따라서 사용자에게 햅틱 정보를 전달해 줄수 있는 휴대용 입력장치를 제시한다. 제안하는 시스템은 사용자의 움직임을 측정하고 움직임에 따라서 사용자에게 햅틱 정보를 되돌려 준다. 교육 컨텐츠와 사용자의 인터랙션에 따른 햅틱 감각을 생성하기 위해 제안하는 입력장치는 모션 제어기, 햅틱 액츄에이터, 무선 통신 모듈, 그리고 모션센서로 구성한다. 사용자의 모션 입력을 측정하기 위해서 가속도 선서를 사용한다. 실험을 통해 제안하는 시스템이 떨림없이 안정적이고 연속적인 햅틱 감각이 생성됨을 파악한다.

  • PDF

실내 가상 경기를 위한 햅틱 AR 스포츠 기술 (Haptic AR Sports Technologies for Indoor Virtual Matches)

  • 김종성;장시환;양성일;윤민성
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.92-102
    • /
    • 2021
  • Outdoor sports activities have been restricted by serious air pollution, such as fine dust and yellow dust, and abnormal meteorological change, such as heatwave and heavy snow. These environmental problems have rapidly increased the demand for indoor sports activities. Virtual sports, such as virtual golf, virtual baseball, virtual soccer, etc., allow playing various sports games without going outdoors. Indoor sports industries and markets have seen rapid growth since the advent of virtual sports. Most virtual sports platforms use screen-based virtual reality techniques, which are why they are called screen sports. However, these platforms cannot support various sports games, especially virtual match games, such as squash, boxing, and so on, because existing screen-based virtual reality sports techniques use real balls and players. This article presents screen-based haptic-augmented reality technologies for a new virtual sports platform. The new platform does not use real balls and players to solve the limitations of previous platforms. Here, various technologies, including human motion tracking, human action recognition, haptic feedback, screen-based augmented-reality systems, and augmented-reality sports content, are unified for the new virtual sports platform. From these haptic-augmented reality technologies, the proposed platform supports sports games, including indoor virtual matches, that existing virtual sports platforms cannot support.

A Review of Haptic Perception: Focused on Sensation and Application

  • Song, Joobong;Lim, Ji Hyoun;Yun, Myung Hwan
    • 대한인간공학회지
    • /
    • 제31권6호
    • /
    • pp.715-723
    • /
    • 2012
  • Objective: The aim of this study is to investigate haptic perception related researches into three perspectives: cutaneous & proprioceptive sensations, active & passive touch, and cognition & emotion, then to identify issues for implementing haptic interactions. Background: Although haptic technologies had improved and become practical, more research on the method of application is still needed to actualize the multimodal interaction technology. Systematical approached to explore haptic perception is required to understand emotional experience and social message, as well as tactile feedback. Method: Content analysis were conducted to analyze trend in haptic related research. Changes in issues and topics were investigated using sensational dimensions and the different contents delivered via tactile perception. Result: The found research opportunities were haptic perception in various body segments and emotion related proprioceptive sensation. Conclusion: Once the mechanism of how users perceives haptic stimuli would help to develop effective haptic interactrion and this study provide insights of what to focus for the future of haptic interaction. Application: This research is expected to provide presence, and emotional response applied by haptic perception to fields such as human-robot, human-device, and telecommunication interaction.

가상반발력을 생성하는 햅틱장비의 안정성과 성능한계에 관한 연구 (On the Stability and Performance Limits of the Force Reflecting Haptic Manipulator)

  • 채영호
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.180-187
    • /
    • 1998
  • The stability and theoretical performance limits of the feedback controlled force reflecting haptic manipulator have been discussed. All the virtual environment which interact physically with the haptic system have its own stable performance limit. Three different realization of the interfaces have been compared using the driving point admittance. The haptic system which is separated from the human hand or finger is superior to its stable interaction provided that there is a means to apply a direct damping between the haptic manipulator and the human finger Electro-magnetic force is used for its digital implementation of the simple separated type haptic device. The stable limits of a virtual wall is calculated and experimental results show that there is performance limits in this implementation.

  • PDF