• Title/Summary/Keyword: Haptic Display

Search Result 82, Processing Time 0.02 seconds

Development of a Wearable Vibrotactile Display Device (착용 가능한 진동촉감 제시 장치 개발)

  • Seo, Chang-Hoon;Kim, Hyun-Ho;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2006
  • Tactile displays can provide useful information without disturbing others and are particularly useful for people with visual or auditory impairments. They can also complement other displays. In this paper, we present a new vibrotactile display device for wearable, mobile, and ubiquitous computing environments. The proposed vibrotactile device has a $5{\times}5$ array configuration for displaying complex information such as letters, numbers, and haptic patterns as well as simple directional ques and situation awareness alarms. Commercially available coin-type vibration motors are embedded vertically in flexible mounting pads in order to best localize vibrations on the skin. An embedded microprocessor controls the motors sequentially with an advanced tracing mode to increase recognition rate. User studies with the vibrotactile device on the top of the foot show 86.7% recognition rate for alphabet characters after some training. In addition, applying vibrotactile device to driving situation shows 83.9% recognition rate. We also propose some potentially useful application scenarios including Caller Identification for mobile phones and Navigation Aids for GPS systems while driving.

  • PDF

Implementing Tactile Display via Electromagnetic Actuator (전자석 액추에이터를 통한 촉각 디스플레이 구현)

  • Kim, Ju Yoon;Sung, Ki Kwang;Kim, Ji Ho;Park, Hyeon Cheol;Choi, Ah Rum
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.146-150
    • /
    • 2020
  • Assistive technologies for people with disabilities are often marginalized in the Fourth Industrial Revolution. In this paper, we intend to present the possibility of acquiring tactile information through the tactile display adapting an electromagnetic actuator. The multi-layered display designed for tactile communication has innovatively narrowed the size and spacing of cells in order to express pictures, maps, and graphics. This display has enabled the visually impaired to touch two-dimensional information combining with other assistive technologies so that. It would also provide a technical source of access to STEM education (Science, Technology, Engineering, and Mathematics) so that students will perform better and be better prepared for advanced education. Moreover, it can be applied to public infrastructure and transportation in smart-city projects on the globe. Hence, this paper introduces the principle of Electromagnetic-actuator and how it can be utilized in many diverse areas.

Display of operating feel of virtual tool in frictional contact with elastically deforming environment (마찰을 고려한 탄성변형 환경과 접촉하는 가상도구의 조작감 제시)

  • Choi, Hyoukryeol;Lee, Seungryong;Ryew, Sungmoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.790-800
    • /
    • 1998
  • This paper presents a haptic rendering algorithm in the case that the virtual environment elastically deforms in response to the force applied by a user with a virtual tool. Considering friction, elasticity, multiple contacts and dynamics of the virtual object, this algorithm lets the operator have the feel of interactions in the virtual environment as close as to the reality. Based on the proposed algorithm several experiments are conducted and its effectiveness is confirmed.

Embodiment of Virtual Magnet Using a 6 DOF Force-Reflecting Haptic Inteface by Ultrasonic Motors (초음파 모터 구동 6자유도 역감 장치를 이용한 가상 자석의 구현)

  • 강원찬
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.729-734
    • /
    • 2000
  • This paper proposes virtual-magnetic system by a force-reflecting interface to drive a ultrasonic motors(USMs) To approach virtual magnet in graphic the 6 dDOF force-reflecting interfaces provides force feedback to users as if I is magnetic-force, So users can feel real magnet Effectively to display the magnetic-force we need the interface with specific characteristics such as low inertia almost zero friction and very high stiffness As an actuator for the interface the USMs have many good advantage satisfied these conditions over conventional servo motors. To estimate capability of this virtual-magnetic system we did an experiment of magnetism based on coulomb's law when Coulmb's low apply this experiment it is vey conformable to real magnet

  • PDF

A Compact Low-Power Shunt Proximity Touch Sensor and Readout for Haptic Function

  • Lee, Yong-Min;Lee, Kye-Shin;Jeong, Taikyeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.380-386
    • /
    • 2016
  • This paper presents a compact and low-power on-chip touch sensor and readout circuit using shunt proximity touch sensor and its design scheme. In the proposed touch sensor readout circuit, the touch panel condition depending on the proximity of the finger is directly converted into the corresponding voltage level without additional signal conditioning procedures. Furthermore, the additional circuitry including the comparator and the flip-flop does not consume any static current, which leads to a low-power design scheme. A new prototype touch sensor readout integrated circuit was fabricated using complementally metal oxide silicon (CMOS) $0.18{\mu}m$ technology with core area of $0.032mm^2$ and total current of $125{\mu}A$. Our measurement result shows that an actual 10.4 inches capacitive type touch screen panel (TSP) can detect the finger size from 0 to 1.52 mm, sharply.

Virtual displays and virtual environments

  • Gilkey, R.H.;Isabelle, S.K.;Simpson, B.B.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.101-122
    • /
    • 1997
  • Our recent work on virtual environments and virtual displays is reviewed, including our efforts to establish the Virtual Environment Research, Interactive Technology, And Simulation (VERITAS) facility and our research on spatial hearing. VERITAS is a state-of -the-art multisensory facility, built around the ${CAVE}^{TM}$ technology. High-quality 3D audio is included and haptic interfaces are planned. The facility will support technical and non-technical users working in a wide variety of application areas. Our own research emphasizes the importance of auditory stimulation in virtual environments and complex display systems. Experiments on auditory-aided visual target acquistion, sensory conflict, sound localization in noise, and loxalization of speech stimuli are discussed.

  • PDF

The Virtual Environment Control using Real-time Graphic Deformation Algorithm (실시간 그래픽 디포메이션 알고리즘을 이용한 가상환경젱어)

  • 강원찬;김남오;최창주
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.309-314
    • /
    • 2004
  • In the established virtual-reality system, although it is possible to transact a faculty of sensation and graphic in a single PC, virtual object forcibly treated with rigid body for the reason of the huge amount of calculation, and the number of polygon is restricted. Furthermore, there is some difficulty in the financial aspect and a program field, because the existing virtual-reality system needs at least two workstations or super computers. In this study, the new force-reflecting algorithm called as "Proxy" and a finite element method of Hyperion are applied to this system in order to transact in real-time. Consequently, though the number of polygon, which brings about an obstacle is increased in the real-time graphic transaction, this system makes it possible to transact in the real-time, not being influenced by the size of the virtual object.

Inflatable Mouse: Volume-adjustable Mouse with Air-pressure-sensitive Input and Haptic Feedback (부풀어지는 마우스: 기압센서를 이용한 입력과 햅틱 피드백을 갖는 부피가 변하는 마우스)

  • Kim, Seok-Tae;Lee, Bo-Ram;Kim, Hyun-Jung;Nam, Tek-Jin;Lee, Woo-Hun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.323-328
    • /
    • 2008
  • Inflatable Mouse is a volume-adjustable user interface. It can be inflated up to the volume of a familiar mouse, but be deflated and stored flat in a PC card slot of a laptop computer when not in use. Inflatable Mouse functions just like a typical mouse; moreover, it provides new interaction techniques by sensing the air pressure in the balloon of the mouse. It also addresses some issues associated with pressure-sensing interactions such as the lack of bi-directional control and the lack of effective feedback. Moreover, it can be used as both a control tool and a display tool. In this paper, the design of an Inflatable Mouse prototype is described and potential application scenarios such as zooming in/out and fast scrolling using pressure control are explained. We also discuss the potential use of Inflatable Mouse as an emotional communication tool.

  • PDF

Vibration Pattern Design Method for Improving Tactile Sensibility (촉감향상을 위한 진동모터의 진동패턴 설계방법론 구축에 대한 연구)

  • Kim, Sungmin;Lee, Soo-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.413-418
    • /
    • 2013
  • As haptic devices become increasingly important in various product fields, it becomes essential to design effective vibration patterns for better tactile sensitivities. Despite this trend, standardization in the design of vibration patterns has not been well established, which causes developers to neglect the effects of haptics while programming or developing products. To provide better tactile sensitivity, the present study introduces a vibration pattern design system and proposes guidelines for designing vibration patterns. This system consists of two modules: (1) a graphical pattern design and evaluation program and (2) a vibro-tactile display device for prototyping the designed vibration patterns.

An Evaluation of Human Sensibility on Perceived Texture for Real Haptic Representation (사실적인 햅틱 표현을 위한 질감지각 감성 평가)

  • Kim, Seung-Chan;Kyung, Ki-Uk;Sohn, Jin-Hun;Kwon, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.900-909
    • /
    • 2007
  • This paper describes an experiment on the evaluation of human sensibility by monitoring responses to changes In the frequency and amplitude of a tactile display system. Preliminary tasks were performed to obtain effective adjectives concerning texture perception. The number of collected adjectives was originally 33. This number of adjectives was reduced to 14 by a suitability survey that asked whether an adjective is suitable for expressing a texture feeling. Finally after performing a semantic similarity evaluation, the number of adjectives was further reduced to ten and these ten were used in the main experiment. In the main experiment, selected sandpaper types and 15 selected combinations of frequencies and amplitudes of a tactile display were utilized to quantitatively evaluate the ten adjectives using a bipolar seven-point scale. The data show that a relationship exists between the independent variables(frequency, amplitude, and grit site) and the dependent variable(perceived texture). That is, the change of frequency and amplitude is directly related to perceived roughness or essential elements of human tactile sensitivity found in the preliminary experiment.