• Title/Summary/Keyword: Haptic Device

Search Result 228, Processing Time 0.028 seconds

A Study on the Shift Register-Based Multi Channel Ultrasonic Focusing Delay Control Method using a CPLD for Ultrasonic Tactile Implementation (초음파 촉각 구현을 위한 CPLD를 사용한 Shift Register기반 다채널 초음파 집속 지연 제어 방법에 대한 연구)

  • Shin, Duck-Shick;Park, Jun-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2022
  • This paper proposes a shift-register-based multichannel ultrasonic focusing delay control method using a complex programmable logic device (CPLD) for a high resolution of ultrasonic focusing system. The proposed method can achieve the ultrasonic focusing through the delay control of driving signals of each ultrasonic transducer of an ultrasonic array. The delay of the driving signals of all ultrasonic channels can be controlled by setting the shift register in the CPLD. The experiment verified that the frequency of the clock used for the delay control increased, the error of the focusing point decreased, and the diameter of the focusing point decreased as the length of the shift register in the proposed method. The proposed method used only one CPLD for ultrasonic focusing and did not require to use complex hardware circuits. Therefore, the resources required for the design of an ultrasonic focusing system could be reduced. The proposed method can be applied to the fields of human computer interaction (HCI), virtual reality (VR) and augmented reality (AR).

3D Simulation of Dental Implant Surgery Using Surgical Guide Stents (식립 보조도구를 이용한 3D 치아 임플란트 시술 시뮬레이션)

  • Park, Hyung-Wook;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.216-226
    • /
    • 2011
  • Surgeon dentists usually rely on their experiential judgments from patients' oral plaster casts and medical images to determine the positional and directional information of implant fixtures and to perform drilling tasks during dental implant surgical operations. This approach, however, may cause some errors and deteriorate the quality of dental implants. Computer-aided methods have been introduced as supportive tools to alleviate the shortcomings of the conventional approach. In this paper, we present an approach of 3D dental implant simulation which can provide the realistic and immersive experience of dental implant information. The dental implant information is primarily composed of several kinds of 3D mesh models obtained as follows. Firstly, we construct 3D mesh models of jawbones, teeth and nerve curves from the patient's dental images using software $Mimics^{TM}$. Secondly, we construct 3D mesh models of gingival regions from the patient's oral impression using a reverse engineering technique. Thirdly, we select suitable types of implant fixtures from fixture database and determine the positions and directions of the fixtures by using the 3D mesh models and the dental images with software $Simplant^{TM}$. Fourthly, from the geometric and/or directional information of the jawbones, the gingival regions, the teeth and the fixtures, we construct the 3D models of surgical guide stents which are crucial to perform the drilling operations with ease and accuracy. In the application phase, the dental implant information is combined with the tangible interface device to accomplish 3D dental implant simulation. The user can see and touch the 3D models related with dental implant surgery. Furthermore, the user can experience drilling paths to make holes where fixtures are implanted. A preliminary user study shows that the presented approach can be used to provide dental students with good educational contents. With future work, we expect that it can be utilized for clinical studies of dental implant surgery.

Design of leaf spring with high fatigue life applied to horizontal linear vibrating actuator (수평 선형 진동 모터에 적용 가능한 높은 피로 수명을 가진 판 스프링 설계)

  • Lee, Ki-Bum;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5684-5688
    • /
    • 2012
  • This paper aims to design the leaf spring of high fatigue life which guides the moving part of the horizontal linear vibrating actuator. The vertical linear vibrating actuator has been used as the vibration device for haptic and alarm function on smart phone. However, the vibrating actuator has a major cause on the limitation to make smart phone slim because of its own characteristic of vertical direction vibration. The horizontally linear vibrating actuator for smart phone slimness has been developed in recent years. One of the most significant parts of horizontal vibrating linear actuator is the guide spring which supports moving part of actuator and enables actuator to vibrate elastically. Various types of leaf springs were designed and analyzed to get the required stiffness with high fatigue life through the stress analysis using commercial structural analysis program, ANSYS. The experiments were performed with prototypes to measure vibration acceleration and life time of leaf spring.

PC based Immersive Virtual Environment(PIVE) System by Recognizing Human Motion (인체 동작 인식을 통한 PC 기반의 몰입 형 가상 환경 시스템)

  • Oh Young-Il;Jo Kyoung-Hwan;Lee Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.103-112
    • /
    • 2006
  • In this paper, we propose a PC based immersive virtual environment system with expandability and compatibility in contrary to existing immersive virtual environment(IVE) systems which have been implemented by supercomputer or special computing system. The application based on commercial personal compute may have two major advantage: one is variety of resources, the other is user-friendly interface. This system intends to offer easy contact to IVE system, realistic images, and convenience. Also, the system can handle various virtual reality at real-time and make it easier to interface existing complicated haptic device. Geometric techniques are adopted to calculate and visualize the physical phenomenon to speed up the computing time. The proposed implementation method of PC based immersive virtual environment system is implemented to the example in which user move around inside of and interact with virtual office environment wearing data glove, behavior recognition devices, and HMD.

Vibration Pattern Design Method for Improving Tactile Sensibility (촉감향상을 위한 진동모터의 진동패턴 설계방법론 구축에 대한 연구)

  • Kim, Sungmin;Lee, Soo-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.413-418
    • /
    • 2013
  • As haptic devices become increasingly important in various product fields, it becomes essential to design effective vibration patterns for better tactile sensitivities. Despite this trend, standardization in the design of vibration patterns has not been well established, which causes developers to neglect the effects of haptics while programming or developing products. To provide better tactile sensitivity, the present study introduces a vibration pattern design system and proposes guidelines for designing vibration patterns. This system consists of two modules: (1) a graphical pattern design and evaluation program and (2) a vibro-tactile display device for prototyping the designed vibration patterns.

Using Neural Network Algorithm for Bead Visualization (뉴럴 네트워크 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Jung-Yeong;Shin, Sang-Ho
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose the Tangible Virtual Reality Representation Method to using haptic device and feature to morphology of created bead from Flux Cored Arc Welding. The virtual reality was started to rising for reduce to consumable materials and welding training risk. And, we will expected maximize virtual reality from virtual welding training. In this paper proposed method is get the database to changing the input factor such as work angle, travelling angle, speed, CTWD. And, it is visualization to bead from extract to optimal morphological feature information to using the Neural Network algorithm. The database was building without error to extract data from automatic robot welder. Also, the Neural Network algorithm was set a dataset of the highest accuracy from verification process in many times. The bead was created in virtual reality from extract to morphological feature information. We were implementation to final shape of bead and overlapped in process by time to using bead generation algorithm and calibration algorithm for generate to same bead shape to real database in process of generating bead. The best advantage of virtual welding training, it can be get the many data to training evaluation. In this paper, we were representation bead to similar shape from generated bead to Flux Cored Arc Welding. Therefore, we were reduce the gap to virtual welding training and real welding training. In addition, we were confirmed be able to maximize the performance of education from more effective evaluation system.

A New Arm Swing Walking Pattern-based Walking Safety System (새로운 팔 스윙 보행 패턴 기반 보행 안전 시스템)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.88-95
    • /
    • 2020
  • In this paper, we propose a new arm swing walking pattern-based walking safety system for safe walking of elderly pedestrians. The proposed system is a walking safety system for elderly pedestrians using haptic-based devices such as smart bands and smart watches, and arm swing-based walking patterns to solve the problem that it is difficult to recognize the fall situation of pedestrians with the existing walking patterns of lower limb movements. Use. The arm swing-based walking pattern recognizes the number of steps and the fall situation of pedestrians through the swing of the arm using the acceleration sensor of the device, and creates a database of the location of the fall situation to warn elderly pedestrians when walking near the expected fall location. It delivers a message to provide pedestrian safety to the elderly. This system is expected to improve the safe walking rights and environment of the elderly.

One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing (원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드)

  • Lee, Woo-Hun;Sohn, Min-Jung
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Most of the commercialized wearable text input devices are wrist-worn keyboards that have adopted the minimization method of reducing keys. Generally, a drastic key reduction in order to achieve sufficient wearability increases KSPC(Keystrokes per Character), decreases text entry performance, and requires additional effort to learn a new typing method. We are faced with wearability-usability tradeoff problems in designing a good wearable keyboard. To address this problem, we introduced a new keyboard minimization method of reducing key pitch. From a series of empirical studies, we found the potential of a new method which has a keyboard with a 7mm key pitch, good wearability and social acceptance in terms of physical form factors, and allows users to type 15.0WPM in 3 session trials. However, participants point out that a lack of passive haptic feedback in keying action and visual feedback on users' input deteriorate the text entry performance. We have developed the One-key Keyboard that addresses this problem. The traditional desktop keyboard has one key per character, but the One-key Keyboard has only one key ($70mm{\times}35mm$) on which a 10*5 QWERTY key array is printed. The One-key Keyboard detects the position of the fingertip at the time of the keying event and figures out the character entered. We conducted a text entry performance test comprised of 5 sessions. The participants typed 18.9WPM with a 6.7% error rate over all sessions and achieved up to 24.5WPM. From the experiment's results, the One-key Keyboard was evaluated as a potential text input device for wearable computing, balancing wearability, social acceptance, input speed, and learnability.

  • PDF