• Title/Summary/Keyword: Haploid spermatids

Search Result 5, Processing Time 0.026 seconds

Production of Transgenic Murine Embryos using Haploid Spermatids Transfected with EGFP Gene (EGFP 유전자가 도입된 반수체 정자세포에 의한 형질전환 설치류 난자의 생산)

  • Kang, K.Y.;Song, S.J.;Lee, H.T.;Chung, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.305-315
    • /
    • 2001
  • In this study, the production of transgenic embryo was attempted by microinjection or round spermatid cultured with foreign DNA. At first, the expression of haploid spermatids specific gene, mTP1 in mouse and hPrm2 in hamster spermatids were investigated by RT-PCR method in testes of young mice and hamster testis. The specific gene expression first appeared at 18 days post partum (dpp) in mice spermatid and 20 dpp in hamster spermatid. Therefore, the round spermatids isolated from 17 dpp mice and 19 dpp hamster were used for the introduction of foreign EGFP gene into haploid round spermatids. For the introduction of EGFP gene haploid round spermatids suspended in medium including EGFP gene were treated with a different electric field strength at 0.11, 0.18 and 0.44 ㎸/cm. After electrical stimulation, viability of testicular sperm cells and 67.6%, 66.4% and 49.9%, in mice and 62.6%, 57.9% and 27% in hamster, respectively. These values were significantly lower than those of non-treated control groups 80.5% in mouse and 69.1% in hamster After 72 hrs culture, the highest expression rate of EGFP gene, 28.5% in mice and 32.1% in hamster were obtained from tile spermatogenic cells electroporated by the field strength or 0.18 ㎸/cm. Then, the ability of fertilization and embryonic development of haploid spermatids transfected with foreign EGFP gene were estimated by the microinjection of spermatids into hamster oocytes. The Irate pronuclear formation rate (77.5%) was lower than non-treated control (80%), and the cleavage rate of the treated group (58.8%) was lower than control (65%). To prove the foreign EGFP integration in hamster embryos, 2-cell stage hamster embryos were subjected to the observation under the fluorescence microscope, and the PCR analysis. As a result, about 44% of 2-cell embryos were showed the integration of EFGP gene into their genome. Therefore, These results suggest the possibility to produce transgenic hamsters by microinjection of haploid spermatid transfected with foreign DNA.

  • PDF

Histopathological Observation and Flow Cytometry Analysis of Testicular Atrophy Induced by 2-Bromopropane On the Sprague-Dawley Rat (2-Bromopropane에 의한 유발된 Sprague-Dawley 랫트의 고환위축의 병리학적 관찰 및 Flow Cytometry를 이용한 검사)

  • 손화영;강부현;조성환;차신우;노정구
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.143-149
    • /
    • 1998
  • This study was carried out to evaluate the testicular toxicity of 2-bromopropane (2-BP), which recently caused occupational intoxication on the reproductive and hematopoietic system in Koreans, using light microscopy, immunohistochemistry and flow cytometry. 10 weeks old male Sprague-Dawley (SD) rats were treated with 0.5 g/㎏/day of 2-BP orally for 8 consecutive weeks. The testes of the rats were vascularly perfused with Karnovsky's solution or immersed in Bouin's solution, embedded in plastic and evaluated with light microscopy. And relative proportions of haploid, diploid, and tetra-ploid states of DNA ploidy in the testicular cell suspensions of the SD rats were examined by flow cytometry. 2-BP induced severe testicular atrophy, depletion and degeneration of spermatogonia, spermatocytes, and spermatids and mild hyperplasia of Leydig cells without significant morphological changes. The Leydig cell hyperplasia was confirmed by immunohistochemistry using proliferating cell nuclear antigen (PCNA). The immunopositive cells against PCNA were observed in the nuclei oj some interstitial cells. Relative proportions of haploid states of DNA ploidy decreased in the atrophic testicular cell suspensions comparing with those of the control. In conclusion, 2-BP induced testicular atrophy with Leydig cell hyperplasia as examined by histopathology, immunohistochemistry and DNA flow cytometry.

  • PDF

Relationship between the nucleolar cycle and chromatoid body formation in the spermatogenesis of $Phrynops$ $geoffroanus$ (Reptilia Testudines)

  • Peruquetti, Rita L.;Taboga, Sebastiao R.;Cabral, Silvia R.;De Oliveira, Classius;Azeredo-Oliveira, Maria T.
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.104-113
    • /
    • 2012
  • The nucleolus is a distinct nuclear territory involved in the compartmentalization of nuclear functions. There is some evidence of a relationship between nuclear fragmentation during spermatogenesis and chromatoid body (CB) formation. The CB is a typical cytoplasmic organelle of haploid germ cells, and is involved in RNA and protein accumulation for later germ-cell differentiation. The goal of this study was to qualitatively and quantitatively describe the nucleolar cycle during the spermatogenesis of $Phrynops$ $geoffroanus$ (Reptilia Testudines), and compare this nucleolar fragmentation with CB formation in this species through the use of cytochemical and ultrastructural analysis. Qualitative analysis showed a fragmentation of the nuclear material after pachytene of the first meiotic division in the primary spermatocytes. Quantitative analysis of the nucleolar cycle revealed a significant difference in the number of nucleoli and in the size of the nucleolus between spermatogonia and early spermatids. Using ultrastructural analysis, we recorded the beginning of the CB formation process in the cytoplasm of primary spermatocytes at the same time as when nuclear fragmentation occurs. In the cytoplasm of primary spermatocytes, the CB was observed in association with mitochondrial aggregates and the Golgi complex. In the cytoplasm of early spermatids, the CB was observed in association with lipid droplets. In conclusion, our data show that the nucleolus plays a role in the CB formation process. During spermatogenesis of $P.$ $geoffroanus$, the CB is involved in some important biological processes, including acrosome formation and mitochondrial migration to the spermatozoon tail and middle piece region.

Establishment of a Simple and Effective Method for Isolating Male Germline Stem Cells (GSCs) from Testicular Cells of Neonatal and Adult Mice

  • Kim Kye-Seong;Lim Jung-Jin;Yang Yun-Hee;Kim Soo-Kyoung;Yoon Tae-Ki;Cha Kwang-Yul;Lee Dong-Ryul
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1347-1354
    • /
    • 2006
  • The aims of this study were to establish a simple and effective method for isolating male germline stem cells (GSCs), and to test the possibility of using these cells as a new approach for male infertility treatment. Testes obtained from neonatal and adult mice were manually decapsulated. GSCs were collected from seminiferous tubules by a two-step enzyme digestion method and plated on gelatin-coated dishes. Over 5-7 days of culture, GSCs obtained from neonates and adults gave rise to large multicellular colonies that were subsequently grown for 10 passages. During in vitro proliferation, oct-4 and two immunological markers (Integrin ${\beta}1,\;{\alpha}6$) for GSCs were highly expressed in the cell colonies. During another culture period of 6 weeks to differentiate to later stage germ cells, the expression of oct-4 mRNA decreased in GSCs and Sertoli cells encapsulated with calcium alginate, but the expression of c-kit and testis-specific histone protein 2B(TH2B) mRNA as well as the localization of c-kit protein was increased. Expression of transition protein (TP-l) and localization of peanut agglutinin were not seen until 3 weeks after culturing, and appeared by 6 weeks of culture. The putative spermatids derived from GSCs supported embryonic development up to the blastocyst stage with normal chromosomal ploidy after chemical activation. Thus, GSCs isolated from neonatal and adult mouse testes were able to be maintained and proliferated in our simple culture conditions. These GSCs have the potential to differentiate into haploid germ cells during another long-term culture.

Characterization and In Vitro Differentiation of Korean Ring-Necked Pheasant (Phasianus colchicus) Male Germ Cells

  • Jeong, Dong Kee;Sharma, Neelesh;Nguyen, Thanh Luan;Kim, Jong Hyun;Oh, Sung Jong
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.351-359
    • /
    • 2014
  • Phasianus colchicus is not only a beautiful bird but also a great value in science and under the threat of endanger. Hence, the aim of this study was to isolate the pheasant male germ cells (mGCs) and then induce them into elongated sperm-like cells in vitro. The mGCs were purified and enriched by a two-step plating method based on the different adherence velocities of mGCs and somatic cells. The percentage of the c-kit positive cells and c-kit negative cells examined by flow cytometry analysis (FCA) was 92.87% and 2.57%, respectively. Subsequently, the mGCs were induced for 48h in DMEM/F12 medium supplemented factors such as retinol acid, testosterone and bovine FSH, followed by 5 weeks in culture. We found that some elongated sperm-like cells appeared initially in vitro under inducement of stimulated factors. The elongated sperm-like cells showed in the expression of changed morphology and post-transcriptional marker such as spermatid associated (SPERT), spermatid perinuclear RNA binding protein (STRBP), round spermatid basic protein 1 (RSBN1) and SPER1L. Moreover, in DNA content identified assay, induced cells showed that the 1C DNA population markedly increased in differentiated group but it was not change in undifferentiated group. Successful in vitro differentiation of pheasant testicular germline cells into spermatids appears to offer extremely attractive potential for the conservation of endangered birds and treatment of male infertility.