• Title/Summary/Keyword: Handling stability

Search Result 210, Processing Time 0.034 seconds

Effect of four-wheel steering system on vehicle handling characterisitcs (4륜 조향시스템이 차량의 주행역학적 특성에 미치는 영향)

  • 심정수;허승진;유영면
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-29
    • /
    • 1990
  • Equipments of passenger cars with modern technologies are gaining their importance. Related with such developments, the four-wheel steering system (4WS) was introduced recently to a few passenger cars in the market. The most important research goal on this new steering system is improvement of active safety, in other words, improvement of handling characteristics of vehicle stability and maneuverability. This paper presents a computer-based study about the effects of 4WS system on the vehicle handling characteristics. A simple bicycle model of 2 d.o.f. is used for the development of four wheel control algorithms of 4WS system, and the rear wheel control strategies are applied to a complex vehicle model of 16 d.o.f. for simulation of selected ISO-driving tests. The 4WS systems, which reduce the sideslip angle at the mass center of vehicle to almost zero, show much improved handling characteristics compared to that of the conventional 2WS system. These 4WS systems, however, result in vehicles with eigen-steer characteristics of extreme understeer behaviour.

  • PDF

Optimization Technique of Passenger Car Suspension System Considering J-Turn Handling Performances (J-선회 조종성능을 고려한 승용차 현가장치의 최적화 기법)

  • Lee, Sang-Beom;Lee, Chun-Seung;Yim, Hong-Jae;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.267-273
    • /
    • 2004
  • The purpose of this paper is to develop a systematic design method for the suspension system hard points and compliance elements, which have great influence on the handling stability of a vehicle. In this paper, a method to optimize J-turn responses is presented based on the principles of design of experiments, multi-body dynamic analysis and optimum design technique. The design variables associated with the J-turn maneuver are selected through the experimental design sensitivity analysis using the perturbation method. An objective function is defined as an approximate function for the J-turn characteristics using the TSA(Taylor series approximation). The values of the design variables, which make the optimized J-turn characteristics, are obtained using the conjugate gradient method. The result of the J-turn simulation shows that the optimized vehicle has more improved handling stability than the optimized vehicle.

Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle (이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선)

  • Sohn, Jeonghyun;Park, Seongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.

Stability Analysis using Dynamic Model of Two Industrial Robots Handling a Single Object (두개의 ROBOT이 한물체를 다룰때의 Dynamic Model을 이용한 Stability Analysis)

  • Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.809-812
    • /
    • 1991
  • Two control strategies are proposed for two arm robots; i.e. position-position control and position-force control. For the proof of these control strategies, the stability analysis is conducted with robot dynamics included. First, the closed form dynamic equation of the robot is derived, then it is transformed into the operational space for further analysis. Finally, Liapunov method is applied to the dynamic equation in operational space.

  • PDF

The Nursing Needs of Post-Surgical Colon Cancer Patients at Discharge (대장암 수술 환자의 퇴원 시 간호요구도 조사)

  • Ju, Ae-Ra;Yeoum, Soon-Gyo;Park, Kyung-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.16 no.4
    • /
    • pp.392-401
    • /
    • 2009
  • Purpose: This study was a descriptive survey of nursing needs for post surgical colon cancer patients at discharge. Method: A survey was done utilizing questionnaires about the nursing needs a target sample of 61 patients who had colon cancer surgery during April May 2006 in a general hospital in Seoul. Results: Levels for treatment & prognosis were the highest in all domain, high in order of psychological support & stability, complications & discomfort, diet, daily life style, recovery & health promotion, and support system. Patient factors affecting nursing needs were age, job, duration of colon cancer and handling of stoma. Conclusion: Using discharge education for colon cancer patients based on the results of this study, nurses should focus on the domains of treatment & prognosis, psychological support & stability and complication & discomfort, and should tailor teaching content to be specified for age, job, duration of colon cancer, and handling of stoma.

  • PDF

A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity (핸들조향속도를 고려한 4WS 제어방법에 관한 연구)

  • 이영화;김석일;김대영;김동룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

Analysis of Handling Qualities for Smart Unmanned Aerial Vehicle in Helicopter Flight Mode (스마트 무인기의 회전익 모드 비행성 분석)

  • Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2005
  • The aim of this paper is to analyze handling qualities of tiltrotor aircraft(TR-S4) in helicopter flight mode including hovering and forward flight. Analysis of handling qualities is composed of aircraft response to control inputs that effect on stability and controllability. In short term response analysis, bandwidth is the critical parameter for small amplitude motions since it relates to the ability of a pilot to crisply start and stop maneuver. The handling qualities of TR-S4 in helicopter mode are analyzed with a SAS and an attitude controller and are satisfied level 1 in almost criteria with simulation of TR-S4 6-DOF nonlinear model.

  • PDF

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

Upper Wafer Handling Module Design and Control for Wafer Hybrid Bonding (Wafer Hybrid Bonding을 위한 Upper Wafer Handling 모듈 설계 및 제어)

  • Kim, Tae Ho;Mun, Jea Wook;Choi, Young Man;An, Dahoon;Lee, Hak-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.142-147
    • /
    • 2022
  • After introducing Hybrid Bonding technology into image sensors using stacked sensors and image processors, large quantity production became possible. As a result, it is currently used in most of the CMOS image market in smartphones and other image-based devices worldwide, and almost all stacked CIS manufacturing sites have focused on miniaturization using hybrid bonding. In this study, an upper wafer handling module for Wafer to Wafer Hybrid Bonding developed to increase the alignment and precision between wafers when wafer bonding. The module was divided two parts to reduce error of both the alignment and degree of precision during wafer bonding. Wafer handling module developed both new Tip/Tilt system controlling θx,θy of upper wafer and striker to push upper wafer. Based on this, it was confirmed through the stability evaluation that the upper wafer handling module can be controlled without any problem during W2W hybrid bonding.

Design of a Disturbance Observer based Control System to Ensure Robust Stability of Quarter-Car Suspensions (1/4 차량 현가 장치의 강인 안정성을 보장하는 외란관측기 기반의 제어 시스템 설계)

  • So, Sang Gyun;Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.995-1001
    • /
    • 2016
  • The vehicle suspension system plays a very important part related with vehicle ride and handling. To improve the vehicle ride and handling many researches have been progressed from various damping parameter tuning techniques to the development of the electronic controlled suspension systems. In this paper, as one of the ride performance improvement a disturbance observer(DOB) based control system is applied to the quarter car vehicle model in order to show that the DOB can obtain good vibration isolation characteristics. First, the robust stability criterion for the DOB is introduced in detail, and then how DOB is applied to the 1/4 car vehicle model is represented, and finally to confirm the effectiveness of the DOB in vehicle ride performance improvement a computer simulation is carried out for various driving conditions.