• 제목/요약/키워드: Handling stability

검색결과 210건 처리시간 0.027초

EXTREME DRIVING CHARACTERISTICS ESTIMATION FOR ESP-EQUIPPED PASSENGER CAR

  • Choi, S.J.;Park, J.W.;Jeon, K.K.;Choi, G.J.;Park, T.W.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.813-819
    • /
    • 2006
  • As the vehicle becomes bigger and faster, the importance of vehicle stability in an extreme driving condition caused by sudden steering, road condition or unexpected case has been emphasized. The ESP system is being utilized to improve the handling performance and the vehicle stability. In this study, we implemented various tests and proposed estimation methods for ESP characteristics in extreme driving situations. The estimation methods for ESP proposed in this paper are expected to facilitate developing the control logic and improving the performance of the ESP system.

지폐구동장치 구동부품 신뢰성 평가에 관한 연구 (A study on the reliability evaluation of driving parts for note handling units)

  • 김주한;정중기;류세현;이성호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1307-1310
    • /
    • 2005
  • ATM is element that reliability, stability is important in relation with customer by financial agency used device. To embody high reliability and stability, reliability estimation technology development is important. When new product is developed, performance and reliability evaluation of product are essential element. In this paper, is treating contents on reliability estimation of stepping motor, BLDC motor and solenoid that is main driving source of note handling units.

  • PDF

운반하역 크레인의 설계해석 자동화 시스템 개발 (Development of Design and Analysis System for Material Handling Cranes)

  • 임동준;박정연;이충동
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.153-159
    • /
    • 1999
  • A material handling crane is composed of many complex structural components which require sufficient strength, stiffness and stability throughout its service life and need to be light in weight, and satisfy the required functions under the entire range of operating conditions. In this study, the analysis system for material handling cranes is presented. This program integrate various structural analyses modules with the GU(Graphic User Interface) concept. Utilizing basic variables as input data, the analysis system performs quasi-static, eigenvalue, buckling, fatigue and stability analysis. Using this program, the designer can generate optimal design data for the cranes without my actual measurements. This system will also be extended to other mechanical structures with kinematic motion like crane.

  • PDF

20자유도 자동차모델을 이용한 가상 주행 시뮬레이터의 개발 (Development of a Virtual Driving Simulator Using 20-DOF Vehicle Model)

  • 김형내;김석일
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.40-47
    • /
    • 1998
  • Recently, the various driving simulator have been used widely to analyze the handling performance of vehicle and to verify the motion control algorithm of vehicle. In this study, a virtual driving simulator based on the 20-DOF vehicle model is realized to estimate the handling performance and stability of a 4WS (Four-wheel-steering) and/or 4n(Four-wheel-driving) vehicle. Especially the DC motor controlled 4WS actuator is modelled in order to reflect the effect of the responsiveness of actuator on the handling performance and stability. And the realized simulator can be applied to develope a real time simulation system for designing and testing the real vehicles.

  • PDF

플렛타이 인력물자취급서 몸통 비틀기에 따른 신체자세 동요에 대한 연구 (Effects of Trunk Twist on Postural Sway During Manually Handling Flat Ties)

  • 김성원;박성하
    • 산업경영시스템학회지
    • /
    • 제33권4호
    • /
    • pp.38-44
    • /
    • 2010
  • We investigated the effects of trunk twist on postural stability during manually handling flat ties. Ten male subjects participated in this study. While handling 5kgf and 10kgf bundles of flat ties respectively, their centers of pressure (COPs) were measured under two levels of body position (twisted and fixed), two levels of direction (left and right), and three levels of object position ($30^{\circ}$, $45^{\circ}$, and $60^{\circ}$). Subjects' postural stability was quantified by calculating the sway length. Results showed that the effect of different object position was significant on postural sway length in subject's medio-lateral axis. Post-hoc multiple comparions revealed that, under the 5kgf load condition, the sway length was increased significantly as the object position increased to $45^{\circ}$. Under the 10kgf load condition, however, the sway length was increased significantly at the object position of $60^{\circ}$. Actual or potential applications of this research include guidelines for the design of working posture evaluation techniques.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

종축 비행성 요구도 및 안정성 여유 만족을 위한 비행제어법칙 최적화 및 평가 (Optimization and Evaluation of Flight Control Laws to Satisfy Longitudinal Handling Quality and Stability Margin Requirements)

  • 김성현;고득원;이태현;김동환;김병수
    • 항공우주시스템공학회지
    • /
    • 제15권5호
    • /
    • pp.8-15
    • /
    • 2021
  • 본 논문은 고기동 제트항공기의 종축 비행성 요구도를 만족하기 위해 최적화 기법을 이용한 설계 방법에 관해 기술한다. 대상 항공기는 모델 역변환 기법이 적용되었으며, 제어이득 최적화로 종축 단주기 비행성 요구도를 만족하지만, 안정성 여유 항목이 고려되지 않았다. 안정성 여유를 만족하지 못하는 경우 개선을 위해 시행 착오법 등을 통한 이득의 직접 재조정이 필요하며, 이를 개선하기 위해 추가적인 보상기와 최적화 구속조건을 추가한 제어이득 최적화 방안을 제시하였다. 또한, 최적화 결과에 대한 비행성 만족도를 재평가하였으며, 최적화 구속조건으로 설정된 비행성 요구도가 반영하지 못하는 시간 반응의 수렴성과 정상상태 오차에 대한 추가적인 제어법칙 평가 기준 설정 및 그 결과에 관해 기술한다.

비행제어법칙 설계 및 해석 절차에 관한 연구 (A Study on the Control Law Design and Analysis Process)

  • 황병문;조인제;김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.913-919
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modem version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. Standard CLDA (Control Law Design and Analysis) process is provided that reduce the development period of the flight control system. In addition, if this process is employed in developing flight control laws, it reduces the trial and error development and verification of control laws. This paper details the design process of developing a flight control law for the RSS aircraft, utilizing military specifications, linear and nonlinea, analysis using XMATH and ATLAS(Aircraft, Tim Linear and Simulation), handling quality tests using the HQS (Handling Quality Simulator), and real flight test results to verify aircraft dynamic flight responses.

차량 운전조건과 속도변화를 고려한 요우모멘트제어 (The Direct Yaw-Moment Control regarding to control the vehicle handling condition)

  • 장영진;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.69-70
    • /
    • 2013
  • By using differential force between left and right wheel, lateral motion can be controlled known as Direct Yaw-moment Control (DYC). In previous researches, DYC control is proposed to increase the stability of the vehicle, but maneuverability has not been discussed sufficiently. The car handling condition which is called the index parameter of maneuverability is dependent on the vehicle velocity and steering angle. To achieve the desired vehicle's cornering path, the car handling condition must be considered sufficiently. In this paper, the novel DYC method is proposed which gives the car handling condition regardless of the longitudinal speed. The proposed controller is based on the PI controller to feedback the curvature parameter. The controlled system shows the advantages of DYC regarding to the reference trajectory by the dual motor system. With respect to the uncontrolled model, the effectiveness of the proposed method is validated by numerical examples.

  • PDF

기준모델 추종제어를 이용한 독립 후륜조향 차량의 조향 특성해석 (The Handling Characteristics of The Independent Rear Wheel Steering Vehicle Using the Reference Model Following Control)

  • 봉우종;이상호;이언구;한창수
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.130-140
    • /
    • 2000
  • In this paper the reference model following control(RMFC) scheme through the optimal control theory is investigated for the independent rear wheel steering(IRWS) vehicle. RMFC vehicle follows the dynamic performance of a virtual vehicle as a reference model deisgned in the controller. Linear vehicle model of two degres-of-freedom is used to derive control scheme which is applied to full vehicle for evaluating handling performances. And 4WS vehicle through RMFC is compared to the conventional 2WS vehicle and 4WS vehicle in the J-turn test. The RMFC logic is also extended to IRWS vehicle, IRWS with RMFC shows not only the excellent handling performance but salso some advantages in terms of the directional stability and responsiveness from the simulation results.

  • PDF