• 제목/요약/키워드: Handling stability

검색결과 210건 처리시간 0.041초

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Consideration of Human Operators in Man-Machine Systems

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2471-2474
    • /
    • 2003
  • This paper focuses on the stability and operability of a man-machine system considering a human operator. Some papers' main interest has been the stability only, but the operability such as fatigue is also the other main interest. In a man-machine system, feelings such as motional, visual, and kinesthetic are important since those enable operators to work easily or fatigue operators. A model of a man-machine system has been developed. Motional, visual, and kinesthetic feelings may be considered as feedbacked sensor signals. We also have quantified the degree of fatigue with respect to reference operation. This is a performance index to be optimized. Several methods are presented to optimize the degree of fatigue and the stability of the integrated system. Examples are presented to show that the usefulness of the proposed modeling method and fatigue mitigating algorithm.

  • PDF

차량 주행성능 향상을 위한 AFS 와 ESP 의 협조제어에 관한 연구 (A Study on Integrated Control of AFS and ESP for the improvement of vehicle handing performance)

  • 박인혜;박기홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.511-514
    • /
    • 2005
  • This paper propose an advanced control strategy to improve vehicle handling and directional stability by integrating Active Front Steering(AFS) with Electronic Stability Program(ESP) . The effect of the integrated control system on the vehicle handling characteristics and directional stability is studied through a close loop computer simulation of and eight degree of freedom nonlinear vehicle model and driver model. Simulation results confirm the effectiveness of the proposed control system and the overall improvements in vehicle handling and directional stability

  • PDF

사용후 핵연료 취급장비의 내진해석 (A Seismic Analysis of Spent Fuel Handling Tool)

  • 김성종;이영신;김재훈;김남균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF

인력물자취급작업시 작업 대상물의 위치가 신체자세동요에 미치는 영향 (Effects of Material Position on Postural Stability during Manual Material Handling Tasks)

  • 박재규;박성하
    • 대한인간공학회지
    • /
    • 제23권4호
    • /
    • pp.1-8
    • /
    • 2004
  • The objective of this study is to identify the effects of material position and physical fatigue on postural stability. Ten male subjects participated in this study. After bicycling exercises, their centers of pressure (COPs) were measured under four material handling positions and four excercise levels. The measured COPs were then utilized to calculate postural sway length in each experimental condition. Subjects' postural stability was quantified using the sway length. Results showed that the effect of different material handling position was significant on the postural sway length in both the posterior-anterior axis and the medio-lateral axis. Results also showed that the postural sway length was increased as physical fatigue accumulated, significantly in subject's posterior-anterior axis. The results imply that bearing a material on the back or front with both hands appeared to cause least sway length and instability.

Passivity Problem of Micro-Teleoperation Handling a Insignificant Inertial Object.

  • Park, Kyongho;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.32.5-32
    • /
    • 2001
  • There has been many teleoperation systems handling the micro object. However, the stability problem for these systems has not been mentioned yet. Historically, Lawrence[1] proposed the Transparency-Optimized Architecture and passivity theorem for stability analysis of bilateral teleoperation. He claimed that unless the task(or environment) impedance contains significance inertial behavior, Passivity condition for Transparency-optimized architecture is not satisfied. In this paper we propose one method which satisfies passivity condition for the micro-teleoperation system handling a insignificant inertial object and is based on the structure of Lawrence and Hashtrudi-Zaad[2] and velocity-force scaling.

  • PDF

Simultaneous position and vibration control of the flexible object while using dual-arm manipulators

  • Yukawa, T.;Uchiyama, M.;Obinata, G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.513-518
    • /
    • 1993
  • In this paper, we consider the handling f a flexible object using dual-arm manipulators. We choose both the side arms as rigid, and the objects to be manipulated as flexible. Our purpose is to realize position control for the flexible object while suppressing its vibration. In particular, the problem taken up here is the stability of the control system while manipulating the object. We propose that the traditional approach to investigate the robot system be expanded to include the object's characteristics (thus transferring the stability of the robot system into the full assembly system). We define a handling characteristic while manipulating the object. Finally, the relationship between the handling characteristic and the positional constraint condition in the hold position of the arms is studied while considering the stability of the control system.

  • PDF

구동기 포화가 있는 견실 고속 온동 제어기 설계 및 정밀 위치 결정 시스템에의 적용 (Design of Robust High-Speed Motion Controller with Actuator Saturation and Its Application to Precision Positioning System)

  • 최현택;김봉근;서일홍;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.768-776
    • /
    • 2000
  • A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechai는 (PTOD) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element, In the proposed controller, DOB basically provides the chance to apply PTOS to non-double integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input PTOS and/or DOB, overall system stability cannot be guaranteed. To solve this problem, ribust stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain the our two saturation handling methods, Additional Saturation Element (ASE_ and Self Adjusting Saturation (SAS), are the equivalent solutions of the saturation problem to maintain internal stability. The stability and performance of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system.

  • PDF

프레임 장성이 차량의 조종안정서에 미치는 영향 (Effects of Chassis Frame Stiffness on Vehicle Handling Characteristics)

  • 이병림
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.100-105
    • /
    • 2002
  • In order to investigate how the chassis frame stiffness including body structure affects vehicle handling characteristics, in this paper, objective test evaluations such as steady state circle maneuvering test and pulse input transient test are performed. The basic steer characteristics can be obtained from stability factor and 4 parameter method is used to evaluate vehicle handling characteristics between original vehicle and the other with reinforced chassis. The result shows that vehicle with reinforced chassis has advantages in handling characteristics.

T-50 착륙외장 형상에서 조종면 형상 재구성 모드의 항공기 비행 (A Study on Aircraft Flight Stability of T-50 Control Surface Reconfiguration Mode in PA Configuration)

  • 김종섭
    • 한국항공우주학회지
    • /
    • 제34권3호
    • /
    • pp.93-100
    • /
    • 2006
  • 현대의 고성능 전투기에 탑재되어 있는 전기식 비행제어계통(Digital Fly-By-Wire Flight Control System)은 항공기 조종면의 고장으로 인해 발생할 수 있는 항공기의 안정성을 보장하기 위해 조종면 형상 재구성 모드(Control Surface Reconfiguration Mode)가 설계되어 있다. T-50 제어법칙에는 단일 조종면이 고장 났을 경우, 정상작동중인 나머지 조종면을 이용하여 항공기를 원활히 조종할 수 있도록 형상 재구성 모드가 적용되어 있다. 본 논문에서는 항공기 운용 시 발생할 수 있는 조종면 결함으로 인해 형상 재구성 모드 제어법칙이 적용되었을 경우, 착륙외장형상에서 항공기 안정성을 해석하기 위하여 선형해석(Linear Analysis)을 수행하였다 그리고 착륙에 대한 비행성(Flying Quality) 저하여부를 판단하기 위해, HQS(Handling Quality Simulator)를 이용하여 조종사 시뮬레이션을 수행하였다. 해석결과, 조종면 고장으로 인해 제어법칙이 형상 재구성 모드로 전환될 경우, 항공기의 조종성 및 비행성의 저하가 다소 발생하였지만, HQS 조종사 시뮬레이션 결과 착륙과정에서는 비행성 요구도인 Level 1을 만족할 수 있었다.