• Title/Summary/Keyword: Hand Region

Search Result 1,267, Processing Time 0.025 seconds

Detection Accuracy Improvement of Hang Region using Kinect (키넥트를 이용한 손 영역 검출의 정확도 개선)

  • Kim, Heeae;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2727-2732
    • /
    • 2014
  • Recently, the researches of object tracking and recognition using Microsoft's Kinect are being actively studied. In this environment human hand detection and tracking is the most basic technique for human computer interaction. This paper proposes a method of improving the accuracy of the detected hand region's boundary in the cluttered background. To do this, we combine the hand detection results using the skin color with the extracted depth image from Kinect. From the experimental results, we show that the proposed method increase the accuracy of the hand region detection than the method of detecting a hand region with a depth image only. If the proposed method is applied to the sign language or gesture recognition system it is expected to contribute much to accuracy improvement.

Classification and Tracking of Hand Region Using Deformable Template and Condensation (Deformable Template과 Condensation을 이용한 손 영역 분류와 추적)

  • Jeong, Hyeon-Seok;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1477-1481
    • /
    • 2010
  • In this paper, we propose the classification and tracking method of the hand region using deformable template and condensation. To do this, first, we extract the hand region by using the fuzzy color filter and HCbCr color model. Second, we extract the edge of hand by applying the Canny edge algorithm. Third, we find the first template by calculating the conditional probability between the extracted edge and the model edge. If the accurate template of the first object is decided, the condensation algorithm tries to track it. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Implementation of Hand-Gesture Interface to manipulate a 3D Object of Augmented Reality (증강현실의 3D 객체 조작을 위한 핸드-제스쳐 인터페이스 구현)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.117-123
    • /
    • 2016
  • A hand-gesture interface to manipulate a 3D object of augmented reality is implemented by recognizing the user hand-gesture in this paper. Proposed method extracts the hand region from real image, and creates augmented object by hand marker recognized user hand-gesture. Also, 3D object manipulation corresponding to user hand-gesture is performed by analyzing a hand region ratio, a numbet of finger and a variation ratio of hand region center. In order to evaluate the performance of the our proposed method, after making a 3D object by using the OpenGL library, all processing tasks are implemented by using the Intel OpenCV library and C++ language. As a result, the proposed method showed the average 90% recognition ratio by the user command-modes successfully.

Finger Counting Algorithm in the Hand with Stuck Fingers (붙어 있는 손가락을 가진 손에서 손가락 개수 알고리즘)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1892-1897
    • /
    • 2017
  • This paper proposes a finger counting algorithm for a hand with stuck fingers. The proposed algorithm is based on the fact that straight line type shadows are inevitably generated between fingers. It divides the hand region into the thumb region and the four fingers region for effective shadow detection, and generates an edge image in each region. Projection curves are generated by appling a line detection and a projection technique to each edge image, and the peaks of the curves are detected as candidates for finger shadows. And then peaks due to finger shadows are extracted from them and counted. In the finger counting experiment on hand images expressing various shapes with stuck fingers, the counting success rate is from 83.3% to 100% according to the number of fingers, and 93.1% on the whole. It also shows that if hand images are generated under controlled conditions, the failure cases can be sufficiently improved.

A Robust Fingertip Extraction and Extended CAMSHIFT based Hand Gesture Recognition for Natural Human-like Human-Robot Interaction (강인한 손가락 끝 추출과 확장된 CAMSHIFT 알고리즘을 이용한 자연스러운 Human-Robot Interaction을 위한 손동작 인식)

  • Lee, Lae-Kyoung;An, Su-Yong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.328-336
    • /
    • 2012
  • In this paper, we propose a robust fingertip extraction and extended Continuously Adaptive Mean Shift (CAMSHIFT) based robust hand gesture recognition for natural human-like HRI (Human-Robot Interaction). Firstly, for efficient and rapid hand detection, the hand candidate regions are segmented by the combination with robust $YC_bC_r$ skin color model and haar-like features based adaboost. Using the extracted hand candidate regions, we estimate the palm region and fingertip position from distance transformation based voting and geometrical feature of hands. From the hand orientation and palm center position, we find the optimal fingertip position and its orientation. Then using extended CAMSHIFT, we reliably track the 2D hand gesture trajectory with extracted fingertip. Finally, we applied the conditional density propagation (CONDENSATION) to recognize the pre-defined temporal motion trajectories. Experimental results show that the proposed algorithm not only rapidly extracts the hand region with accurately extracted fingertip and its angle but also robustly tracks the hand under different illumination, size and rotation conditions. Using these results, we successfully recognize the multiple hand gestures.

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

Noise-robust Hand Region Segmentation In RGB Color-based Real-time Image (RGB 색상 기반의 실시간 영상에서 잡음에 강인한 손영역 분할)

  • Yang, Hyuk Jin;Kim, Dong Hyun;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1603-1613
    • /
    • 2017
  • This paper proposes a method for effectively segmenting the hand region using a widely popular RGB color-based webcam. This performs the empirical preprocessing method four times to remove the noise. First, we use Gaussian smoothing to remove the overall image noise. Next, the RGB image is converted into the HSV and the YCbCr color model, and global fixed binarization is performed based on the statistical value for each color model, and the noise is removed by the bitwise-OR operation. Then, RDP and flood fill algorithms are used to perform contour approximation and inner area fill operations to remove noise. Finally, ROI (hand region) is selected by eliminating noise through morphological operation and determining a threshold value proportional to the image size. This study focuses on the noise reduction and can be used as a base technology of gesture recognition application.

A Study on Hand Gesture Recognition using Computer Vision (컴퓨터비전을 이용한 손동작 인식에 관한 연구)

  • Park Chang-Min
    • Management & Information Systems Review
    • /
    • v.4
    • /
    • pp.395-407
    • /
    • 2000
  • It is necessary to develop method that human and computer can interfact by the hand gesture without any special device. In this thesis, the real time hand gesture recognition was developed. The system segments the region of a hand recognizes the hand posture and track the movement of the hand, using computer vision. And it does not use the blue screen as a background, the data glove and special markers for the recognition of the hand gesture.

  • PDF

Hand Region Tracking and Fingertip Detection based on Depth Image (깊이 영상 기반 손 영역 추적 및 손 끝점 검출)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.65-75
    • /
    • 2013
  • This paper proposes a method of tracking the hand region and detecting the fingertip using only depth images. In order to eliminate the influence of lighting conditions and obtain information quickly and stably, this paper proposes a tracking method that relies only on depth information, as well as a method of using region growing to identify errors that can occur during the tracking process and a method of detecting the fingertip that can be applied for the recognition of various gestures. First, the closest point of approach is identified through the process of transferring the center point in order to locate the tracking point, and the region is grown from that point to detect the hand region and boundary line. Next, the ratio of the invalid boundary, obtained by means of region growing, is used to calculate the validity of the tracking region and thereby judge whether the tracking is normal. If tracking is normal, the contour line is extracted from the detected hand region and the curvature and RANSAC and Convex-Hull are used to detect the fingertip. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for tracking and detecting the fingertip.

Vision-Based hand shape recognition for a pictorial puzzle (손 형상 인식 정보를 이용한 그림 맞추기 응용 프로그램 제어)

  • Kim, Jang-Woon;Hong, Sec-Joo;Lee, Chil-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.801-805
    • /
    • 2006
  • In this paper, we describe a system of controlling the pictorial puzzle program using information of hand shape. We extract hand region using skin color information and then principal component analysis uses centroidal profile information which comes blob of 2D appearance for hand shape recognition. This method suit hand shape recognition in real time because it extracts hand region accurately, has little computation quantity, and is less sensitive to lighting change using skin color information in complicated background. Finally, we controlled a pictorial puzzle with using recognized hand shape information. This method has good result when we make an experiment on application of pictorial puzzle. Besides, it can use so many HCI field.

  • PDF