사용자 포즈의 3차원 데이터 생성을 통한 3차원 포즈 인식은 2차원 포즈 인식의 문제점을 해결하기 위해서 많이 연구되고 있지만, 3차원 표면 데이터의 방대한 양으로 포즈 인식에서 중요한 특징 추출(feature extraction)이 어렵고 수행 시간이 많이 걸리는 문제점을 가지고 있다. 본 논문에서는 3차원 포즈 인식의 두 가지 문제점인 특징 추출의 어려움과 느린 처리속도를 개선하기 위해서 3차원 형상복원 기술로 모델의 3차원 표면 점들로 구성된 데이터를 2차원 데이터로 변환하는 차원 축소(dimension reduction) 방법을 제안한다. 실린더형 외곽점을 이용한 메쉬없는 매개변수화(meshless parameterization) 방법은 방대한 데이터인 3차원 포즈 데이터를 2차원 데이터로 변환하여 특징 추출과 매칭과정의 연산 속도를 향상 시키며, 특징 추출의 효율성 검증을 위해 간단한 환경에서 실험이 가능한 손 포즈 인식 및 인간 포즈 인식에 적용하였다.
패턴 인식과 기계 학습 분야에서 분류는 가장 기본적으로 해결해야 하는 문제의 유형이다. Adaboost 알고리즘은 Boosting 알고리즘의 아이디어를 실제 데이터분석에 이용할 수 있도록 개량한 방법으로써, 단계를 반복하여 나온 여러 개의 약한 분류기와 가중치 값들의 조합으로 강한 분류기를 생성하는 두 개의 클래스를 분류하는 분류기이다. 주성분 분석법과 선형 판별 분석법은 높은 차원의 특징 벡터를 낮은 차원의 특징 벡터로 축소하는 특징 벡터의 차원 감소와 데이터의 특징 추출에도 유용하게 사용되는 방법들이다. 본 논문에서는, 주성분 분석법과 선형 판별 분석법을 이용하여 추출한 특징을 Adaboost 알고리즘의 약 분류기로 사용함으로써, 특징 추출과 분류를 동시에 하고, 인식률을 높이는 효율적인 Boosted-PCA와 Boosted-LDA 알고리즘을 제안한다. 마지막 장에서는, 제안하는 알고리즘으로 UCI Data-Set 중 2 Class-Data와 FRGC Data의 남자와 여자 영상에 대해서 분류 실험을 진행하였다. 실험의 결과로 제안한 Boosted-PCA와 Boosted-LDA 알고리즘이 기존의 특징 추출 알고리즘과 최근접 이웃 분류기, SVM을 이용한 분류기 방법과 비교하여 인식률이 향상됨을 보인다.
최근 몇 년 동안 사람들의 고유한 생리적인 특징을 이용한 생체 인식은 새로운 학문으로서 연구 및 개발이 활발하게 진행되고 있다. 지금까지, 오로지 지문 인식만이 다른 생체 인식에 비해 확인과 식별 시스템들이 더 정교하고, 비싼 취득 인터페이스들과 인식 과정을 필요로 하기 때문에 온라인 보안 검사를 위하여 한정된 성공을 보았다. Hand-Geometry는 생체 인식의 확인 그리고 취득의 편리 때문에 식별 그리고 확인을 위하여 사용되고 있다. 그러므로, 본 논문은 이러한 특징을 가지는 손의 기하학적인 Hand-Geometry 인식 시스템을 제안하고자 한다. 해부학적인 관점에서, 인간의 손은 길이, 폭, 두께, 기하학적인 모양, 손바닥의 모양, 그리고 손가락들의 기하학적인 모양까지 특성으로 나타내어질 수 있다. 본 논문에서 제안한 Hand-Geometry 인식 시스템은 30개의 특징 데이터를 가진다. 그러나 특징 데이터 가운데 사용자의 Hand-Geometry의 특징에 따라 길이 데이터가 변하는 것을 실험적으로 발견하였다. 따라서 이와 같은 가변적인 길이 데이터를 안정화시키기 위하여 본 논문에서는 길이 데이터의 기준점을 손톱 아래 점으로 정하고, GA를 적용하여 보다 안정된 특징점을 추출하였다.
In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.
모바일 보안의 증가에 따라, 지식에 근거한 사용자 이름, 패스워드 방식의 개인 인증에 대한 실패를 경험한 사용자들은 개인 식별과 인증에서 손 형상, 지문 인식, 목소리와 같은 생체 정보를 사용하는 것을 더욱 선호하게 되었다. 그러므로 모바일 보안을 위해 개인 식별과 인증에서 생체 인증을 사용하는 것은 인터넷 상에서 고객과 판매자들 모두에게 신뢰성을 준다. 본 연구는 개인 식별과 인증을 위해 iphone4와 galaxy s2의 모바일 폰 영상으로부터 손형상, 손 바닥 특징, 손가락 길이와 너비 등의 손 생체 정보를 인식하는 시스템을 개발한다. 본 연구의 손 생체 정보인식 시스템은 영상 획득, 전처리, 잡음 제거, 표준 특징패턴 추출, 개별 특징패턴 추출 그리고 손 생체 정보 인식의 6가지 단계로 구성한다. 실험에서 사용한 입력 데이터는 50명의 실험자의 손 형상 영상과 손 바닥 영상으로 구성한 250장의 데이터에 대한 평균 인식률은 93.5%이다.
In this paper, we propose a robust fingertip extraction and extended Continuously Adaptive Mean Shift (CAMSHIFT) based robust hand gesture recognition for natural human-like HRI (Human-Robot Interaction). Firstly, for efficient and rapid hand detection, the hand candidate regions are segmented by the combination with robust $YC_bC_r$ skin color model and haar-like features based adaboost. Using the extracted hand candidate regions, we estimate the palm region and fingertip position from distance transformation based voting and geometrical feature of hands. From the hand orientation and palm center position, we find the optimal fingertip position and its orientation. Then using extended CAMSHIFT, we reliably track the 2D hand gesture trajectory with extracted fingertip. Finally, we applied the conditional density propagation (CONDENSATION) to recognize the pre-defined temporal motion trajectories. Experimental results show that the proposed algorithm not only rapidly extracts the hand region with accurately extracted fingertip and its angle but also robustly tracks the hand under different illumination, size and rotation conditions. Using these results, we successfully recognize the multiple hand gestures.
CAD diagrams generally consists of many basic components: symbols, character, and connection lines. Thus, to recognize the diagrams, it is necessary to extract each components, and understand their meanings and relation among them. This paper describes a method for linking basic components extracted efficiently from hand-down diagrams to OrCAD data format. Experimental results with a hand-drawn diagrams of electronic and logic circuit show utility of the proposed method.
Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3924-3940
/
2020
Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.
제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
/
pp.302-306
/
1994
This paper describes how to recognize hand written Hangeul character using the stroke order of the elementary segment. The recognition system is constructed of parts : character input part, segment disassembling part, character element extraction part and character recognition part. The character input part reads the character and performs thinning algorithm. In the segment disassembling part, the input character is disassembled into elementary segments using the direction codes and the feature parameters. In the character element extraction part, we extract the character element using the stroke order and the knowledge rule. Finally, we able to recognize the hand written Hangeul characters by assembling the character elements, in the character recognition part.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.