• Title/Summary/Keyword: Hamp2

Search Result 4, Processing Time 0.022 seconds

Isolation of Two Hepcidin Paralogs, Hamp1 and Hamp2, from a Euryhaline Javanese Ricefish (Oryzias javanicus: Beloniformes)

  • Lee, Sang-Yoon;Kim, Byoung-Soo;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2011
  • Two hepcidin paralogs (ojhamp1 and ojhamp2) were isolated and characterized from a euryhaline Javanese ricefish (Oryzias javanicus: Beloniformes). The ojhamp1 cDNA encoded 90 or 91 amino acids (aa) of a typical HAMP1 preproprotein. This preproprotein is believed to cleave and yield the 66 or 67 aa-proprotein, followed by the 26 aa-mature peptide, composed of 8 conserved cysteine residues and the QSHL amino terminal motif. The ojhamp2 cDNA encoded 89 aa of HAMP2 preproprotein, cleaved to yield a 65 aa proprotein, and subsequently the 25 aa-mature peptide. The mature OJHAMP1 possessed a cationic isoelectric point (pI), whereas OJHAMP2 had an anionic charge. At the genomic level, both ojhamp1 and ojhamp2 share a conserved tripartite structure (three exons interrupted by two introns) with other vertebrate hepcidin genes. However, the ojhamp1 was shown to exist as two distinct mRNA species, encoding 90 or 91 aa, due to alternative splicing at the junction site between intron I and exon II. Both ojhamp1 and ojhamp2 transcripts were detected in a wide range of tissue types with varying levels of basal expression, although the highest expression was observed in the liver for both isoforms. Transcriptional response to bacterial challenge using Edwardsiella tarda showed that ojhamp1 was moderately upregulated in the liver but remained unchanged in the kidney. However, the ojhamp2 was significantly suppressed in both the kidney and liver, suggesting a potential diversification between the two paralogs.

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

Isolation of Novel Hepcidin Isoforms from the Rockbream Oplegnathus fasciatus (Perciformes)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.31-42
    • /
    • 2011
  • Three novel hepcidin isoforms were isolated and characterized from the perciform fish species Oplegnathus fasciatus. These hepcidin isoforms (designated rbhepc5, rbhepc6 and rbhepc7) were found to share a conserved, tripartite gene structure and a considerable sequence homology one another. A comparison of their mature peptide sequences with those of other perciform hepcidin orthologs indicated that these three hepcidin isoforms as well as four other isoforms previously identified in this species, appear to belong to the HAMP2 group of hepcidin genes. Analysis of the 5'-upstream sequences showed that the proximal non-coding regions of rbhepc5~7 do not possess canonical TATA signals; instead, they harbor several binding motifs for transcription factors involved in immune modulation. Reverse transcriptase-PCR analysis demonstrated that the rbhepc5~7 are expressed predominantly in the liver, and that the transcription of rbhepc5~7 is rapidly induced in the liver, but not in other tissues, by experimental challenge with any of three different bacterial species. However, transcription of rbhepc6 appeared to be negligible under both basal and stimulated conditions, as judged by the redundancy count of randomly chosen reverse transcriptase-PCR clones.

Effect of Korean pine nut oil on hepatic iron, copper, and zinc status and expression of genes and proteins related to iron absorption in diet-induced obese mice

  • Shin, Sunhye;Lim, Yeseo;Chung, Jayong;Park, Soyoung;Han, Sung Nim
    • Journal of Nutrition and Health
    • /
    • v.54 no.5
    • /
    • pp.435-447
    • /
    • 2021
  • Purpose: Body adiposity is negatively correlated with hepatic iron status, and Korean pine nut oil (PNO) has been reported to reduce adiposity. Therefore, we aimed to study the effects of PNO on adiposity, hepatic mineral status, and the expression of genes and proteins involved in iron absorption. Methods: Five-week-old male C57BL/6 mice were fed a control diet containing 10% kcal from PNO (PC) or soybean oil (SBO; SC), or a high-fat diet (HFD) containing 35% kcal from lard and 10% kcal from PNO (PHFD) or SBO (SHFD). Hepatic iron, copper, and zinc content; and expression of genes and proteins related to iron absorption were measured. Results: HFD-fed mice had a higher white fat mass (2-fold; p < 0.001), lower hepatic iron content (25% lower; p < 0.001), and lower hepatic Hamp (p = 0.028) and duodenal Dcytb mRNA levels (p = 0.037) compared to the control diet-fed mice. Hepatic iron status was negatively correlated with body weight (r = -0.607, p < 0.001) and white fat mass (r = -0.745, p < 0.001). Although the PHFD group gained less body weight (18% less; p < 0.05) and white fat mass (18% less; p < 0.05) than the SHFD group, the hepatic iron status impaired by the HFD feeding did not improve. The expression of hepatic and duodenal ferroportin protein was not affected by the fat amount or the oil type. PNO-fed mice had significantly lower Slc11a2 (p = 0.022) and Slc40a1 expression (p = 0.027) compared to SBO-fed mice. However, the PC group had a higher Heph expression than the SC group (p < 0.05). The hepatic copper and zinc content did not differ between the four diet groups, but hepatic copper content adjusted by body weight was significantly lower in the HFD-fed mice compared to the control diet-fed mice. Conclusion: HFD-induced obesity decreased hepatic iron storage by affecting the regulation of genes related to iron absorption; however, the 18% less white fat mass in the PHFD group was not enough to improve the iron status compared to the SHFD group. The hepatic copper and zinc status was not altered by the fat amount or the oil type.