• Title/Summary/Keyword: Halomonas strain

Search Result 7, Processing Time 0.015 seconds

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

Production of alkaline protease by the moderate halophile, Halomonas sp. ES 10 (Halomonas sp. ES 10에 의한 alkaline protease의 생산)

  • Kim, Chan-Jo;Kim, Kyo-Chang;Oh, Man-Jin;Choi, Seong-Hyun
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.307-311
    • /
    • 1991
  • A moderate halophile, ES 10 which produces a high level of alkaline protease was isolated from the salted anchovies and indentified as a strain of Halomonas sp. The optimum growth of the Halomonas sp. was revealed in the presence of 2 M NaCl and its growth rate in the Temporary Synthetic Medium was increased by adding DL-alanine, but inhibited by adding L-proline. The concentration of $Na^+$, $K^+$ and $Mg^{2+}$ in the cell mass of the Halomonas sp. ES 10 was 5-, 25- and 35-fold higher by dry weight basis, respectively than those of B. subtilis or E. coli. Norberg and Hofsten medium with 1 M NaCl was selected as the best medium for producing high level of alkaline protease. The optimum temperature for the growth and protease production was equally $20^{\circ}C$.

  • PDF

Isolation and Identification of a Histamine-degrading Barteria from Salted Mackerel (자반고등어에서 histamine 분해능을 가진 세균의 분리 동정)

  • Hwang Su-Jung;Kim Young-Man
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.743-748
    • /
    • 2005
  • Histamine can be produced at early spoilage stage through decarboxylation of histidine in red-flesh fish by Proteus morganii, Hafnia alvei or Klebsiella pneumoniae. Allergic food poisoning is resulted from the histamine produced when the freshness of Mackerel degrades. Conversely it has been reported that there are bacteria which decompose histamine at the later stage. We isolated histamine decomposers from salted mackerel and studied the characteristics to help establish hygienic measure to prevent outbreak of salted mackerel food poisoning. All the samples were purchased through local supermarket. Histamine decomposers were isolated using restriction medium using histamine 10 species were selected. Identification of these isolates were carried out by the comparison of 16S rDNA partial sequence; as a result, we identified Pseudomonas putida strain RA2 and Halomonas marina, Uncultured Arctic sea ice bacterium clone ARKXV1/2-136, Halomonas venusta, Psychrobacter sp. HS5323, Pseudomonas putida KT2440, Rhodococcus erythropolis, Klebsiella terrigena (Raoultella terrigena), Alteromonadaceae bacterium T1, Shewanella massilia with homology of $100\%,{\;}100\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}100\%,{\;}95\%,{\;}99\%,{\;}and{\;}100\%$respectively. Turbidometry determination method and enzymic method were employed to determine the ability of histamine decomposition. Among those species Shewanella massilia showed the highest in ability of histamine decomposition. From these results we confirmed various histamine decomposer were present in salted mackerel product in the market.

Effect of NaCl on Halomonas subglaciescola DH-1 Incapable of Growing at Non-Salinity (Halomonas subglaciescola DH-1의 생장에 미치는 염화나트륨의 영향)

  • Na, Byung-Kwan;Yoo, Young-Sun;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.298-303
    • /
    • 2007
  • A halophilic bacterium, H. subglaciescola DH-1, grew at 2.0 M salinity, but did not grow at 0.8 M salinity when cultivated at higher temperature ($40^{\circ}C$) than optimum ($30^{\circ}C$). When the cell extract of strain DH-1 was heated at $50^{\circ}C$ for 60 min in the absence of NaCl, isocitrate dehydrogenase and malate dehydrogenase lost their activities, but when it was heated in the presence of 2.0 M NaCl, the activity was maintained. Meanwhile, the cell extract of E. coli did not catalyze the reduction of $NAD^+$ to NADH coupled with the oxidation of isocitrate and malate at higher salinities than 1.0 M. The pH range for DH-1 was 7 to 10, and that for E. coli was 5 to 9. DH-1 was not grown in conditions with sodium salts other than NaCl.

Analysis of Prokaryote Communities in Korean Traditional Fermented Food, Jeotgal, Using Culture-Dependent Method and Isolation of a Novel Strain (배양 분리법을 통한 젓갈 내 원핵 세균 군집 분석 및 신규 미생물의 분리)

  • Kim, Min-Soo;Park, Eun-Jin;Jung, Mi-Ja;Roh, Seong-Woon;Bae, Jin-Woo
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • This study was aimed at the analysis of prokaryote communities in Korean traditional fermented food, jeotgal, and isolation of a novel strain from jeotgal by using culture-dependent and molecular biological approaches. Seventeen kinds of jeotgal were selected on the basis of its origins and sources. The samples were inoculated on 12 kinds of media. 308 isolates were selected randomly by morphological features, and its 16S rRNA gene sequences was amplified by PCR technique with bacteria and archaea specific primers (8F, 21F, and 1492R). The 16S rRNA gene sequences were compared with those in EzTaxon and GenBank databases. DNA-DNA hybridization was performed to identify a novel strain. As a result, the majority of the isolates were lactic acid bacteria (Leuconostoc, Weisella, Lactococcus, Lactobacillus, Carnobacterium, Marinilactibacillus), Bacillus, Pseudomonas, Micrococcus, Brevibacterium, Microbacterium and Kocuria in 17 kinds of jeotgal. The strains belonging to Salinicoccus, Halomonas, Cobetia, Lentibacillus, Paracoccus, and Psychrobacter were isolated as minor ones. Fourteen novel species were identified based on phylogenetic analysis.

Diversity and Phylogenetic Analysis of Culturable Marine Bacteria Isolated from Rhizosphere Soils of Suaeda japonica Makino in Suncheon Bay (순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Nam, Yoon-Jong;Kim, Hyun;Lee, Myung-Chul;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • Bacterial diversity was studied in the rhizosphere of Suaeda japonica Makino, which is native to Suncheon Bay in South Korea. Soil samples from several sites were diluted serially, and pure isolation was performed by subculture using marine agar and tryptic soy agar media. Genomic DNA was extracted from 29 pure, isolated bacterial strains, after which their 16S rDNA sequences were amplified and analyzed. Phylogenetic analysis was performed to confirm their genetic relationship. The 29 bacterial strains were classified into five groups: phylum Firmicutes (44.8%), Gamma proteobacteria group (27.6%), Alpha proteobacteria group (10.3%), phylum Bacteriodetes (10.3%), and phylum Actinobacteria (6.8%). The most widely distributed genera were Bacillus (phylum Firmicutes), and Marinobacterium, Halomonas, and Vibrio (Gamma proteobacteria group). To confirm the bacterial diversity in rhizospheres of S. japonica, the diversity index was used at the genus level. The results show that bacterial diversity differed at each of the sampling sites. These 29 bacterial strains are thought to play a major role in material cycling at Suncheon Bay, in overcoming the sea/mud flat-specific environmental stress. Furthermore, some strains are assumed to be involved in a positive interaction with the halophyte S. japonica, as rhizospheric flora, with induction of growth promotion and plant defense mechanism.

Biological Treatment of Piggery Liquid Manure by Malodor Reducing Bacteria (악취 저감용 세균에 의한 돈분뇨의 생물학적 처리)

  • Quan, Xiao-Tian;Shin, Jae-Hyeong;Wang, Yan-Qing;Choi, Min-Gyung;Kim, Sang-Min;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.971-978
    • /
    • 2022
  • Sulfur-oxidizing, ammonium-oxidizing, and nitrogen-oxidizing media were used to isolate bacteria to degrade malodor gas effectively in piggery manure or soil. Twelve different strains were isolated: Paenibacillus amylolyticus, Rhodococcus jostii, Rhodococcus qingshengii, Rhodococcus opacus, Alcaligenes faecalis, Alcaligenes faecalis, Kastia adipate, Kastia adipata, Microbacterium oxydans, Halomonas campisalis, Acinetobacter oleivorans, and Micrococcus luteus. By inoculating each strain in the piggery liquid manure by 1%, the pH in most strain treatments was maintained at 8.0. Total bacterial counts were maintained at 7.3~7.9 log CFU/ml until 15 days, and then they dropped dramatically down to 5.1~5.5 log CFU/ml. On the 30th day, the treatment group inoculated with Rhodococcus opacus SK2659 showed a relatively high level of ammonium nitrogen removal, which was 39% of that of the control group. When Rhodococcus opacus SK2659 was inoculated, H2S concentration after 100 days was 3.23% compared with the control (no inoculation), suggesting that Rhodococcus opacus SK2659 is an excellent strain for removing malodor gas. The gas production of the treatments was lower than that of the control. The total accumulated amount of gas production in most strain treatments was a quarter of the gas production compared to the control throughout the experimental periods. Acinetobacter oleivorans SK2675 showed the lowest level at 12.39% compared to the control in gas production. In conclusion, the use of mixture strains, such as Rhodococcus opacus SK2659 and Acinetobacter oleivorans SK2675 isolated in this study could increase the efficacy of malodor gas reduction in the biological treatment of piggery manure.