• Title/Summary/Keyword: Halomonas marina

Search Result 2, Processing Time 0.014 seconds

Physiology and Growth Properties of Halophilic Bacteria Isolated from Jeotgal (Salted Seafood) (젓갈(염장발효식품)에서 분리한 호염세균의 생리 및 성장특성)

  • Jung Yoo Jeong;Park Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • Two species of halophilic bacteria were isolated from five salted seafoods and identified by 16S rDNA sequenc­ing homology. One was identified as Halomonas subglaciescola and other four strains were belong to Halomo­nas marina. The identity of all isolates with standard organisms was above $95\%.$ H. subglaciescola, H. marina IN, and H. marina SH-2 grew in salinity condition from $3%\;to\;18\%$ NaCl but growth of H. marina SQ and H. marina SH-l grew in salinity environment from $8\%\;to\;17\%.$ Maximum biomass of H. subglaciescola, H. marina IN, H. marina SQ, H. marina SH-1, and H. marina SH-2 growing in LB medium containing $15\%$ NaCl were about 3.2, 4.5, 4.5, 5.7, and 4.2, however the maximum biomass in LB medium containing $5\%$ NaCl were about 2.2, 1.1, 0.7, 0.2, and 2.4 as optical density at 660 nm, respectively. In scanning electron micrograph, unknown material (mucus) attached to outer membrane of all isolates was observed. When mucus isolated from halophilic bacterial cell was added to culture of E. coli, E. coli grew in medium containing $15\%$ NaCl.

Isolation and Identification of a Histamine-degrading Barteria from Salted Mackerel (자반고등어에서 histamine 분해능을 가진 세균의 분리 동정)

  • Hwang Su-Jung;Kim Young-Man
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.743-748
    • /
    • 2005
  • Histamine can be produced at early spoilage stage through decarboxylation of histidine in red-flesh fish by Proteus morganii, Hafnia alvei or Klebsiella pneumoniae. Allergic food poisoning is resulted from the histamine produced when the freshness of Mackerel degrades. Conversely it has been reported that there are bacteria which decompose histamine at the later stage. We isolated histamine decomposers from salted mackerel and studied the characteristics to help establish hygienic measure to prevent outbreak of salted mackerel food poisoning. All the samples were purchased through local supermarket. Histamine decomposers were isolated using restriction medium using histamine 10 species were selected. Identification of these isolates were carried out by the comparison of 16S rDNA partial sequence; as a result, we identified Pseudomonas putida strain RA2 and Halomonas marina, Uncultured Arctic sea ice bacterium clone ARKXV1/2-136, Halomonas venusta, Psychrobacter sp. HS5323, Pseudomonas putida KT2440, Rhodococcus erythropolis, Klebsiella terrigena (Raoultella terrigena), Alteromonadaceae bacterium T1, Shewanella massilia with homology of $100\%,{\;}100\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}99\%,{\;}100\%,{\;}95\%,{\;}99\%,{\;}and{\;}100\%$respectively. Turbidometry determination method and enzymic method were employed to determine the ability of histamine decomposition. Among those species Shewanella massilia showed the highest in ability of histamine decomposition. From these results we confirmed various histamine decomposer were present in salted mackerel product in the market.