• Title/Summary/Keyword: Half-Speed Whirl

Search Result 5, Processing Time 0.024 seconds

Moment Whirl due to Leakage Flow in the Back Shroud Clearance of a Rotor

  • Tsujimoto, Yoshinobu;Ma, Zhenyue;Song, Bing-Wei;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • Recent studies on the moment whirl due to leakage flow in the back shroud clearance of hydro-turbine runners or centrifugal pump impellers are summarized. First, destabilizing effect of leakage flow is discussed for lateral vibrations using simplified models. Then it is extended to the case of whirling motion of an overhung rotor and the criterion for the instability is obtained. The fluid moment caused by a leakage clearance flow between a rotating disk and a stationary casing was obtained by model tests under whirling and precession motion of the disk. It is shown that the whirl moment always destabilizes the whirl motion of the overhung rotor while the precession moment destabilizes the precession only when the precession speed is less than half the rotor speed. Then vibration analyses considering both whirl and precession are made by using the hydrodynamic moments determined by the model tests. For larger overhung rotors, the whirl moment is more important and cause whirl instability at all rotor speed. On the other hand, for smaller overhung rotors, the precession moment is more important and cancels the destabilizing effect of the whirl moment.

Free and Forced Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings (유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동 해석)

  • 임승철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.852-859
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles in hard disk drives are to be supported by hydrodynamic bearings in place of conventional ball-type ones. However, the existing models are inappropriate to apply to accurate prediction of vibration characteristics because the HDD spindle tends to take quite a complex shape to secure its performance and cost-effectiveness. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validations via experiments. Remarkably, to this end all the components in the system are modeled as elastic adopting the finite element method.

Free and Forced Vibrations of HDD Spindle Systems Supported by Hydrodynamic Bearings (유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동)

  • 임승철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.598-604
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles In hard disk drives are to be supported by hydrodynamic bearings in place of conventional ones. However, the existing models are inappropriate to apply to accurate Prediction or vibration characteristics because the Inn spindle tends to take quite a complex shape to secure the performance of the new type bearings. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validation by means of experiments. Remarkably, to this end each component in the system is modeled as elastic adopting the finite element method.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.