• Title/Summary/Keyword: Half value thickness

Search Result 77, Processing Time 0.031 seconds

A Study on Measurement of the Half Value Layer in Diagnostic X-ray (진단용(診斷用) X선(線)의 반가층(半價層)에 관(關)한 연구(硏究))

  • Ko, Shin-Gwan
    • Journal of radiological science and technology
    • /
    • v.7 no.1
    • /
    • pp.53-66
    • /
    • 1984
  • The quality of continuous x-ray beam depends upon the half value layer which varies according to the geometric conditions, the filtration thickness, and the amount of accelerated voltage (KVP). Experiments were conducted on the amount of electric energy that was changed to x-ray energy, and on the relationship between KVp and the intensity of x-rays. The results were as follows: 1. The amount of x-rays were not equal under the condition of the same exposure factor. 2. The intensity of x-rays was attenuated by an exponential function the geometric conditions were "good" and it was not when they were "poor". 3. The thicker the total filtration substance was and the higher the KVp was, the bigger the amount of x-ray energy was. 4. The homogeneity of medium energy x-ray was the best, when the total filtration substance was 3.9mm A1. 5. The mean energy of continuous x-ray was about 45% of KVp.

  • PDF

Reference X-ray Irradiation System for Personal Dosimeter Testing and Calibration of Radiation Detector

  • Lee, Seung Kyu;Chang, Insu;Kim, Sang In;Lee, Jungil;Kim, Hyoungtaek;Kim, Jang-Lyul;Kim, Min Chae
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Background: In the calibration and testing laboratory of Korea Atomic Energy Research Institute, the old X-ray generator used for the production of reference X-ray fields was replaced with a new one. For this newly installed X-ray irradiation system, beam alignment as well as the verification of beam qualities was conducted. Materials and Methods: The existing X-ray generator, Phillips MG325, was replaced with YXLON Y.TU 320-D03 in order to generate reference X-ray fields. Theoretical calculations and Monte Carlo simulations were used to determine initial filter thickness. Beam alignment was performed in three steps to deliver a homogeneous radiation dosage to the target at different distances. Finally, the half-value layers were measured for different X-ray fields to verify beam qualities by using an ion chamber. Results and Discussion: Beam alignment was performed in three steps, and collimators and other components were arranged to maintain the uniformity of the mean air kerma rate within ${\pm}2.5%$ at the effective beam diameter of 28 cm. The beam quality was verified by using half-value layer measurement methods specified by American National Standard Institute (ANSI) N13.11-2009 and International Organization for Standardization (ISO)-4037. For each of the nine beams than can be generated by the new X-ray irradiation system, air kerma rates for X-ray fields of different beam qualifies were measured. The results showed that each air kerma rate and homogeneity coefficient of the first and second half-value layers were within ${\pm}5%$ of the recommended values in the standard documents. Conclusion: The results showed that the new X-ray irradiation system provides beam qualities that are as high as moderate beam qualities offered by National Institute of Standards and Technology in ANSI N13.11-2009 and those for narrow-spectrum series of ISO-4037.

Effect of Bilayer Thickness on Hardness of Ag/Ni Nanoscale Multilayers (Ag/Ni 나노다층박막의 경도에 미치는 Bilayer 두께의 영향)

  • Kang Bong Cheol;Kim Hee Yeoun;Kwon Oh Yeol;Lim Byung Kyu;Hong Soon Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.23-26
    • /
    • 2004
  • Ag/Ni multilayers with different bilayer thickness between 3 and 100 nm produced by DC magnetron puttering have been studied by cross-sectional TEM and nanoindentation. The micrograph shows perfect layered structure with sharp interfaces between Ag and Ni layers. Absolute hardness is calculated as a reference value to compare hardness of specimens regardless of indent depth. A hardness enhancement of nearly $100\%$ over the rule-of-mixtures values, calculated from the measured hardness of single Ag and Ni thin films, is observed. The hardness increases with decreasing bilayer thickness until 8nm. This enhancement shows a good agreement with Hall-Petch relation using grain size (one half of the bilayer thickness) confined within a layer. The deformation behavior can be explained by dislocation pile-up in smaller grains.

  • PDF

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Development of a flexible composite based on vulcanized silicon casting with bismuth oxide and characterization of its radiation shielding effectiveness in diagnostic X-ray energy range and medium gamma-ray energies

  • Ibrahim Demirel;Haluk Yucel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2570-2575
    • /
    • 2024
  • The study aims to develop a novel, lead-free, flexible and lightweight composite shielding material against ionizing radiation. For this, it was used bismuth oxide (Bi2O3) in RTV-2 silicon matrix. The shielding tests were carried out in both diagnostic X-ray energies and intermediate gamma-ray energy range of up to 662 keV to determine the radiation attenuation properties of this material in terms of attenuation ratio, half value layer, tenth value layer, mean free path and lead equivalency of samples in weight of 30%, 40%, 50% in Bi2O3. In the diagnostic X-ray energy range, half value layer, tenth value layer and lead equivalency (in mm Pb) of the produced samples were measured at 80 and 100 kVp narrow beam conditions according to the requirements of EN IEC 61331-1 standard. The results show that lead equivalent values of the produced novel sheets was measured to be 0.16 mm Pb, corresponding to a 6 mm thickness of the flexible sample when it contains 30% wt. Bi2O3 in RTV matrix. The experimental findings for durability and flexibility also indicated that this new RTV-based flexible, lead -free shielding composite can be used safely for especially for manufacturing aprons, garments and thyroid guards used in mammography, radiology, nuclear medicine and dental applications in practice.

The design and the analysis of a LED lens for forming a uniform illumination on an illuminating plane (균일한 조도를 위한 LED 조명용 렌즈 설계 및 분석)

  • You, Ilhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.954-964
    • /
    • 2015
  • In this research, an overlapped illumination model was newly proposed for designing a freeform LED lens with a uniform illuminance distribution on its illuminating plane. Based on the proposed model and conventional illumination models, freeform lenses were designed and their performances and tolerances were compared. As a result of the tolerance analysis about thickness change in lens, position, size change, central direction change of light emission and characteristic change in LED source. This proposed model and divergent illumination model are similar to the performance about central direction change of light emission in LED source. but the uniformity illumination value in this proposed model is more remarkably value than it in divergent illumination model about characteristic change in LED source.

Evaluation of the Beam Quality of Intraoral X-ray Equipments Using Intraoral Standard Films (구내 표준 방사선사진을 이용한 구내방사선촬영기의 선질 평가)

  • Lee Sang-Sub;Kwon Hyok-Rak;Sim Woo-Hyoun;Oh Seung-Hyoun;Lee Ji-Youn;Jeon Kug-Jin;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.30 no.3
    • /
    • pp.183-188
    • /
    • 2000
  • Purpose: This study was to evaluate the beam quality of intraoral X-ray equipments used at Yonsei University Dental Hospital (YUDH) using the half value layer (HVL) and the characteristic curve of intraoral standard X-ray film. Materials and Methods : The study was done using the intraoral X -ray equipments used at each clinical department at YUDH. Aluminum filter was used to determine the HVL. Intraoral standard film was used to get the characteristic curve of each intraoral X-ray equipment. Results: Most of the HVLs of intraoral X-ray equipments were higher than the least recommended thickness, but the REX 601 model used at the operative dentistry department and the X-707 model used at the pediatric dentistry department had HVLs lower than the recommended thickness. The slopes of the characteristic curves of films taken using the PANP AS 601 model and REX 601 model at operative dentistry department, the X-70S model of prosthodontic dentistry department, and the REX 601 model at the student clinic were relatively low. Conclusion: HVL and the characteristic curve of X-ray film can be used to evaluate the beam quality of intraoral X-ray equipment. In order to get the best X-ray films with the least radiation exposure to patients and best diagnostic information in clinical dentistry, X -ray equipment should be managed in the planned and organized fashion.

  • PDF

Studies on structural, optical, thermal and low energy shielding for gamma rays for the ZSBP glasses

  • Abeer S. Altowyan;M.I. Sayyed;Ashok Kumar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3796-3803
    • /
    • 2024
  • By employing the melt-quenching technique, the ZnO-SrO-B2O3-PbO (ZSBP) glasses have been successfully fabricated. The derivative of Absorption Spectra Fitting (DASF) method was used to study the energy band gap (Eg) of the glasses which decreases from 3.57 eV to 3.39 eV. The structural properties have been studied using the Raman spectroscopy. The glass transition temperature (Tg) decreases with increase in concentration of the lead oxide. The current study examines the radiation shielding properties at 30.80-444 keV. The addition of PbO to the glasses resulted in a proportionate increase in the mass attenuation coefficient (MAC), suggesting a diminishing tendency in radiation transmission. At 30.80 keV, the MAC values are extremely high and range from 18.06 to 21.11 cm2/g. As density rises, the half value layer (HVL) decreases. In addition, the average HVL (${\overline{HVL}}$) decreases. The glass thickness required to reduce the radiation intensity to 90 %, 50 %, 25 %, and 10 % of its initial value is investigated at an energy of 35.80 keV. The T90 %, T50 %, T25 %, and T10 % values are 0.0020, 0.0132, 0.0264, and 0.0439 cm, respectively. The results suggest that a greater thickness of the radiation barrier is necessary to attain the necessary degree of attenuation.

Film Thickness Dependence of Ac High Field for Low Density Polyethylene (저밀도 폴리에틸렌의 고전계 파형에 대한 필름 두께 의존성)

  • Choi, Yong-Sung;Wee, Sung-Dong;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.45-49
    • /
    • 2008
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

A Research Trend on Film Thickness Dependence of Ac High Feld for Low Density Polyethylene (저밀도 폴리에틸렌을 위한 고전계 파형의 필름 두께의존성에 관한 연구 동향)

  • Jung, Sung-Chan;Rho, Jung-Hyun;Lee, Joo-Hong;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1988-1989
    • /
    • 2007
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF