본 논문에서는 테블릿 및 노트북 컴퓨터에 적용될 수 있는 프린트형 광대역 폴디드 모노폴 안테나를 제안하였다. 제안된 안테나는 두 선로의 폭이 비대칭인 프린트형 폴디드 모노폴 안테나와 역 L형 무급전 소자를 결합하여 Bluetooth, WiMAX, UWB 시스템의 대역폭(2.3~10.6 GHz)을 수용할 수 있도록 설계하였다. 또한, 폴디드모노폴 안테나 내부에 반파장 오픈 스터브를 삽입하여 UWB 대역과 간섭을 일으키는 무선 랜 대역(5.15~5.85 GHz)을 차단하였다. 제작된 무선 랜 대역 차단 광대역 안테나의 -10 dB 대역폭은 2.27~10.6 GHz(4.7:1)이며, -10 dB 대역 저지 대역폭은 700 MHz(5.15~5.85 GHz, 12.72 %)로 측정되었다. 안테나의 이득과 효율은 차단 대역을 제외하고 각각 3.93 dBi와 81 % 이상으로 나타났으며, 차단 대역에서 이득은 -2 dBi(5.5 GHz) 효율은 14.65 %로 측정되었다. 안테나의 크기는 12.75(1 ${\lambda}$/10)${\times}$12(1 ${\lambda}$/11) $mm^2$(${\lambda}$는 2.3 GHz의 공기중 파장)로 테블릿 및 노트북의 작은 공간에 탑재하기에 적합한 크기를 가진다. 따라서 설계된 안테나가 테블릿 및 노트북 컴퓨터용 광대역 안테나로 적합함을 확인하였다.
고화질의 전산화단층촬영상을 통해 정확한 병변 검출과 진단을 할 수 있다. 이와 같은 장점 때문에 전산화단층촬영 시 방사선량을 줄이면서 영상 화질을 개선하기 위해 많은 연구가 수행되었다. 최근 전산화단층촬영상 화질을 향상시키기 위한 딥러닝 기반 기술이 개발되었고, 기존의 기술에 비해 우수한 성능을 보이고 있다. 본 연구에서는 전산화단층촬영상의 공간분해능을 향상시키기 위해 초고해상도 합성곱 신경망 모델을 사용하였으며, 초고해상도 합성곱 신경망 모델의 성능을 결정하는 초 매개 변수 변화에 따른 영상 화질을 평가하여 초고해상도 합성곱 신경망 모델에 대한 초 매개 변수의 효과를 검증하였다. Profile, 구조적 유사성 지수, 최대신호 대 잡음비 및 반치폭을 측정하여 초 매개 변수 변화에 따른 초고해상도 합성곱 신경망 모델의 성능을 평가하였다. 연구결과, 초고해상도 합성곱 신경망 모델의 성능은 epoch와 training set이 증가함에 따라 향상되었으며, 전산화단층촬영상 화질을 향상시키기 위해 learning rate 최적화가 필요하다는 사실을 확인하였다. 따라서 최적의 초 매개 변수와 함께 구현된 초고해상도 합성곱 신경망 모델은 전산화단층촬영상의 품질을 향상시킬 수 있다.
ZnGa₂Se₄단결정 박막은 수평 전기로에서 함성한 ZnGa₂Se₄다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 610℃, 450℃로 고정하여 단결정 박막을 성장하였다. 10 K에서 측정한 광발광 exciton 스펙트럼과 이중결정 X-선 요동곡선(DCRC)의 반치폭(FWHM)을 분석하여 단결정 박막의 최적 성장 조건을 얻었다. Hall효과는 van der Pauw방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293 K에서 각각 9.63×10/sup 17/㎤, 296 ㎠/V·s였다. 광전류 봉우리의 10 K에서 단파장대의 가전자대 갈라짐(splitting)에의해서 측정된 Δcr (crystal field splitting)은 183.2meV, △so (spin orbit splitting)는 251.9meV였다. 10K의 광발광 측정으로부터 고품질의 결정에서 볼 수 있는 free exciton 과 매우 강한 세기의 중성 받개 bound exciton등의 피크가 관찰되었다. 이때 중성 받개 bound exciton등의 피크가 관찰되었다. 이때 중성 반개 bound excition의 반치폭과 결합에너지는 각각 11meV와 24.4meV였다. 또한 Hanes rule에 의해 구한 불순물의 활성화 에너지는 122meV였다.
The thallium-doped sodium iodide [NaI(Tl)] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM) has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs). It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl) gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl) $2^{\prime}{\times}2^{\prime}$ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA) to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.
본 연구에서는 Si(111) 기판을 이용하여 고품질의 GaN 박막을 성장하기 위하여 다양한 패턴을 갖는 Si 기판을 제작하였다. Si(111) 기판위에 이온 스퍼터(ion-sputter)를 이용하여 Pt 박막을 증착한 후 열처리(thermal annealing)하여 Pt 금속 마스크를 형성하고 유도 결합 플라즈마 이온 식각(inductively coupled plasma-reactive ion etching, ICP-RIE) 공정을 통하여 기둥(pillar)형태의 나노 패턴된 Si(111) 기판을 제작하였고 리소그래피 공정을 통하여 마이크로 패턴된 Si(111) 기판을 제작하였다. 일반적인 Si(111) 기판, 마이크로 패턴된 Si(111) 기판 및 나노 패턴된 Si(111) 기판위에 유기화학기상증착(metal organic chemical vapor deposition, MOCVD) 방법으로 GaN 박막을 성장하여 표면 특성과 결정성 및 광학적 특성을 분석하였다. 나노 패턴된 Si(111) 기판위에 성장한 GaN 박막은 일반적인Si(111) 기판과 마이크로 패턴된 Si(111) 기판위에 성장한 GaN 박막보다 표면의 균열과 거칠기가 개선되었다. 나노 패턴된 Si(111) 기판위에 성장한 GaN (002)면과 (102)면에 x-선 회절(x-ray diffraction, XRD) 피크의 반폭치(full width at half maximum, FWHM)는 576 arcsec, 828 arcsec으로 다른 두 기판위에 성장한 GaN 박막 보다 가장 낮은 값을 보여 결정성이 향상되었음을 확인하였다. Photoluminescence(PL)의 반폭치는 나노 패턴된 Si(111) 기판위에 성장한 GaN 박막이 46.5 meV으로 다른 기판위에 성장한 GaN 박막과 비교하여 광학적 특성이 향상되었음을 확인하였다.
Ga source 채널의 HCl flow가 700 sccm, 그리고 V/III족 비가 10으로 고정되었을 때, r-면 사파이어 위에 HVPE로 성장된 a-면 GaN 에피층 특성에 대한 성장 온도 영향을 연구하였다. 추가적으로 성장온도가 $1000^{\circ}C$, 그리고 Ga source 채널의 HCl flow가 700 sccm으로 고정되었을 때, 공급가스에 대한 V/III족 비 영향에 대하여 연구하였다. 성장온도가 높아지면서, a-면 GaN 에피층에 대한 (11-20) 면의 Rocking curve(RC)의 반치폭 값이 감소하였고 a-면 GaN 에피층의 성장두께는 증가하였다. $1000^{\circ}C$에서 V/III족 비가 높아짐에 따라, (11-20) 면의 RC의 반치폭 값이 감소하였고, a-면 GaN 에피층의 성장두께가 증가하였다. $1000^{\circ}C$와 V/III족 비=10에서 성장된 a-면 GaN 에피층이 (11-20) 면에서 가장 낮은 RC 반치폭인 734 arcsec을 보이며, RC측정을 통한 (11-20) 면의 방위각 가장 작은 영향을 보여준다.
최근 개발된 하이브리드플라즈마 가속입자충격 프로세스를 이용하여 기상의 TEOS(tetraethoxysilane, (C$_2$$H_{5}$O)$_4$Si)를 Ar-hybrid plasma 환경 하에 분사하는 방법으로 나노구조(nanostructured) Si 코팅 합성에 대해서 연구하였다. 반응가스와 함께 플라즈마제트는 노즐을 통해서 챔버속으로 700 torr정도에서 10 torr정도로 압력 강하를 동반하며 확장되었다. 노즐의 초중단부에서 핵생성 및 입성장한 초미세입자는 노즐의 하단의 자유 제트에서 가속되어 온도조절 기판위에 관성 충격에 의해 퇴적되어 10nm 이하의 비정질 실리콘 코팅층이 형성되었다. 퇴적된 비정질 코팅은 Ar분위기의 tube로에서 열처리 되었는데 90$0^{\circ}C$에서 30분간 열처리하여 결정화가 시작되었고, 이때 시편의 입자크기는 TEM을 통하여 10nm 이하로 유지됨을 알 수 있었다. 또한 라만분광기로 분석한 결과 이동치는 2.39$cm^{-1}$ /이며 반감폭은 5.92$cm^{-1}$ /으로 피크 이동치로 도출한 평균입자크기 7nm값과 일치하였으며, 특히 PL 피크는 398nm에서 강한 피크를 나타내어 3∼4 nm의 극미세 나노입자도 포함하고 있음을 알 수 있었다.
본 연구에서는 RF 마그네트론 스퍼터링 법으로 Eagle 2000 유리 기판 위에 Ga-doped ZnO (GZO) 박막을 제작하여, 기판온도 $100{\sim}400^{\circ}C$ 및 박막두께에 따른 박막의 결정화 특성과 전기적 및 광학적 특성을 조사하였다. 공정조건에 상관없이 모든 GZO 박막은 c-축 배향성을 나타내는 (002) 회절 피크만이 관찰되었고, $300^{\circ}C$에서 400 nm 증착한 GZO 박막이 가장 우수한 결정성을 나타내었으며, 그 때의 반가폭 값은 $0.4^{\circ}$이었다. 또한, AFM 으로 박막의 표면형상을 분석한 결과 $300^{\circ}C$에서 400 nm 증착한 박막에서 비교적 입자가 고르고 치밀한 박막이 형성되었다. 전기적 특성은 홀 측정결과 $300^{\circ}C$에서 400 nm 증착한 박막에서 가장 낮은 비저항 ($8.01{\times}10^{-4}\;{\Omega}cm$)과 가장 높은 전자 캐리어농도 ($3.59{\times}10^{20}\;cm^{-3}$) 를 나타내었다. 모든 GZO 박막은 공정조건에 무관하게 가시광 영역에서 80 %의 투과율을 나타내었으며, 기판온도 및 박막두께 증가에 따른 Ga 도핑효과의 증가로 밴드 갭이 넓어지는 Burstein-Moss 효과가 관찰되었다.
펄스 레이저 증착법을 이용하여 ZnO 박막을 quartz 기판 위에 증착하였으며, 기판 온도에 따른 박막의 구조적 및 광학적 특성을 조사하였다. 기판 온도 변화에 관계없이 모든 박막이 (002) 방향으로 성장하였으며, 400 $^{\circ}C$ 에서 반가폭은 0.24$^{\circ}$로 가장 우수한 결정성을 갖는 박막이 제작되었다. 또, 박막의 발광 특성을 조사한 결과, 모든 박막에서 UV 발광 피크와 deep-level 발광 피크가 관찰되었으며, 기판 온도에 따른 발광 피크의 변화가 관찰되었다. 가장 우수한 UV 발광 특성은 400 $^{\circ}C$ 에서 관찰되었으며, 반가폭은 14 nm 였다. 기판 온도에 무관하게 가시광 영역에서 약 85 % 정도의 투과도를 나타내었다. 투과도 측정을 통하여 얻은 광학 밴드갭 에너지와 UV 발광 중심 값을 비교한 결과, 두가지 결과 값들이 서로 유사한 값을 나타냈다. 이로부터 UV 발광 중심 값이 ZnO 의 near band edge emission 을 나타낸다는 사실을 알 수 있었다.
본 논문에서는 Sierpinski 프랙탈 구조를 이용하여 이중 대역에서 동작하는 배열 안테나를 제안하였다. 거울 대칭 형태의 $2{\times}2$ 배열 구조는 상부 $1{\times}2$ 배열과 하부 $1{\times}2$ 배열 간에 $180^{\circ}$ 위상차를 인가하면 cellular 대역과 WCDMA 대역에서 broadside 방향으로 복사 패턴을 형성한다. 따라서, 동위상 급전 회로를 적용하기 위해 배열 구조에서 상부와 하부 배열 간에 패치와 그라운드의 위치를 변경하여 위상 반전 구조를 구현하였다. 배열 안테나는 $28{\times}30{\times}5\;cm^3$의 크기를 가지며, -10 dB 반사 손실 대역은 1차 대역에서 855~1,380 MHz(47 %), 2차 대역에서 1,770~2,330 MHz(27 %)이다. 이득은 1차 대역에서 9.06~12.44 dBi, 2차 대역에서 11.76~14.84 dBi이다. 1,100 MHz에서 x-z 평면의 반전력 빔 폭은 $57^{\circ}$, y-z 평면의 반전력 빔 폭은 $46^{\circ}$이고, 2,050 MHz에서는 각각 $43^{\circ}$와 $28^{\circ}$이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.