• Title/Summary/Keyword: Hakata Bay

Search Result 3, Processing Time 0.014 seconds

A Numerical Prediction of Nutrient circulation in Hakata Bay by Sediment-Water Ecological Model(SWEM) (수-저질생태계모델에 의한 박다만의 물질순환예측)

  • Lee In-Cheol;Ryu Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.3-14
    • /
    • 2001
  • In order to predict nutrient circulation in Hakata bay, we have developed an ecosystem model named the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton. This model was applied to prevent eutrophication in Hakata bay, located in western Japan. The calculated results of the tidal currents by the hydrodynamic model showed good agreement with the observed currents. Moreover, SWEM simulated reasonably well the seasonal variations of water quality, and reproduced spatial heterogeneity of water quality in the bay, observed in the field. According to the simulation of phosphorus circulation at the head of the bay, it was predicted that the regeneration process of phosphorus across the sediment-water interface had a strong influence on the water quality of the bay.

  • PDF

Prediction of Seasonal Variations on Primary Production Efficiency in a Eutrophicated Bay (부영양화해역의 내부생산효율에 대한 계절변동예측)

  • 이인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2001
  • The Primary Production of phytoplanktons produces organic matter in high concentration in eutrophicated Hakata Bay, Japan, even during the winter season in spite of low water temperature. Phytoplanktons are considered to have any biological capabilities to keep activities of photosynthesis under the unfavorable conditions, and this affects water quality of the bay. In this study, seasonal variations in primary production efficiency were predicted by using a simple box-type ecosystem model, which introduced the concept of efficiency for absorption of solar radiation energy in relation to growth of phytoplanktons under the low solar radiation intensity. According to the simulation result of primary production, it was organic pollution comes from dissolved organic carbon (DOC) throughout the year, DOC of which is originated from the primary production of phytoplanktons on biological response of the seasonal variation of ambient conditions.

  • PDF

A Numerical Simulation of Dissolved Oxygen Based on Stochastically-Changing Solar Radiation Intensity (일사량의 확률분포를 이용한 용존산소의 수치예측실험)

  • LEE In-Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.617-623
    • /
    • 2001
  • To predict the seasonal variation of dissolved oxygen (DO) in Hakata bay, Japan, possible 20 time-series of different hourly-solar-radiation intensities were generated based on stochastically changing solar radiation intensity, and a numerical simulation on dissolved oxygen (DO) was carried out for each time series by using the Sediment-Water Ecological Model (SWEM). The model, consisting of two sub-models with hydrodynamic and biological models, simulates the circulation process of nutrient between water column and sediment, such as nutrient regeneration from sediments as well as ecological structures on the growth of phytoplankton and zooplankton, The results of the model calibration followed the seasonal variation of observed water quality well, and generated cumulative-frequency-distribution (CFD) curves of daily solar radiation agreed well with observed ones, The simulation results indicated that the exchange of sea water would have a great influence on the DO concentration, and that the concentration could change more than 1 mg/L in a day. This prediction method seems to be an effective way to examine a solution to minimize fishery damage when DO is depleted.

  • PDF