• 제목/요약/키워드: Hadoop MapReduce Framework

검색결과 46건 처리시간 0.031초

러스터 파일 시스템 기반 하둡 맵리듀스 실행 환경 구현 및 성능 분석 (Implementation and Performance Analysis of Hadoop MapReduce over Lustre Filesystem)

  • 곽재혁;김상완;허태상;황순욱
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권8호
    • /
    • pp.561-566
    • /
    • 2015
  • 하둡은 오픈소스 기반의 분산 데이터 처리 프레임워크로서 과학 및 상용 분야에서 널리 사용되고 있는데 최근에 대규모 데이터의 실시간 처리 및 분석을 위해 고성능 컴퓨팅(HPC) 기술을 활용하여 하둡을 고성능화하기 위한 연구가 시도되고 있다. 본 논문에서는 하둡의 기본 파일시스템 구현인 하둡 분산파일시스템(HDFS)을 고성능 병렬 분산파일시스템인 러스터 파일시스템으로 대체하여 사용할 수 있도록 하둡 파일시스템 라이브러리를 확장하여 구현하였고 하둡이 제공하는 표준 벤치마크 도구를 사용하여 성능을 분석하였다. 실험 결과 러스터 파일시스템 기반으로 하둡 맵리듀스 응용을 수행하는 경우에 2-13배의 성능 향상이 있음을 확인할 수 있었다.

Task failure resilience technique for improving the performance of MapReduce in Hadoop

  • Kavitha, C;Anita, X
    • ETRI Journal
    • /
    • 제42권5호
    • /
    • pp.748-760
    • /
    • 2020
  • MapReduce is a framework that can process huge datasets in parallel and distributed computing environments. However, a single machine failure during the runtime of MapReduce tasks can increase completion time by 50%. MapReduce handles task failures by restarting the failed task and re-computing all input data from scratch, regardless of how much data had already been processed. To solve this issue, we need the computed key-value pairs to persist in a storage system to avoid re-computing them during the restarting process. In this paper, the task failure resilience (TFR) technique is proposed, which allows the execution of a failed task to continue from the point it was interrupted without having to redo all the work. Amazon ElastiCache for Redis is used as a non-volatile cache for the key-value pairs. We measured the performance of TFR by running different Hadoop benchmarking suites. TFR was implemented using the Hadoop software framework, and the experimental results showed significant performance improvements when compared with the performance of the default Hadoop implementation.

이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템 (A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images)

  • 배유석;박종열
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권1호
    • /
    • pp.20-25
    • /
    • 2016
  • 디지털 빅데이터 시대가 도래함에 따라 다양한 분야에서 하둡 플랫폼이 널리 사용되고 있지만, 하둡 맵리듀스 프레임워크는 대량의 작은 파일들을 처리하는데 있어서 네임노드의 메인 메모리와 맵 태스크 수가 증가하는 문제점을 안고 있다. 또한, 맵리듀스 프레임워크에서 하드웨어 기반 데이터 병렬성을 지원하는 GPU를 활용하기 위해서는 C++ 언어 기반의 태스크를 맵리듀스 프레임워크에서 수행하기 위한 방식이 필요하다. 따라서, 본 논문에서는 이미지 빅데이터를 처리하기 위해 하둡 플랫폼 환경에서 이미지 시퀀스 파일을 생성하고 하둡 파이프를 이용하여 GPU 기반의 얼굴 검출 태스크를 맵리듀스 프레임워크에서 처리하는 얼굴 검출 시스템을 제시하고 단일 CPU 프로세스 대비 약 6.8배의 성능 향상을 보여준다.

노드의 가용성을 고려한 하둡 태스크 할당 정책 (Task Assignment Policy for Hadoop Considering Availability of Nodes)

  • 류우석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.103-105
    • /
    • 2017
  • 하둡 맵리듀스(MapReduce)는 사용자가 요청한 잡을 하둡 클러스터에서 효과적으로 병렬 분산 처리하기 위한 프레임워크이다. 맵리듀스의 태스크 스케쥴러는 사용자의 잡 태스크들을 여러 노드에 할당하기 위한 기법이다. 하지만, 기존의 스케쥴러는 노드의 가용 상태에 따라 규모가 동적으로 변화하는 하둡 클러스터를 고려하지 않음으로써 클러스터의 자원을 충분히 활용하지 못하는 문제가 있다. 본 논문에서는 노드의 가용성을 고려하여 잡 태스크를 효과적으로 할당함으로써 하둡 클러스터의 활용성을 높이는 태스크 할당 정책을 제시한다.

  • PDF

A New Approach to Web Data Mining Based on Cloud Computing

  • Zhu, Wenzheng;Lee, Changhoon
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.181-186
    • /
    • 2014
  • Web data mining aims at discovering useful knowledge from various Web resources. There is a growing trend among companies, organizations, and individuals alike of gathering information through Web data mining to utilize that information in their best interest. In science, cloud computing is a synonym for distributed computing over a network; cloud computing relies on the sharing of resources to achieve coherence and economies of scale, similar to a utility over a network, and means the ability to run a program or application on many connected computers at the same time. In this paper, we propose a new system framework based on the Hadoop platform to realize the collection of useful information of Web resources. The system framework is based on the Map/Reduce programming model of cloud computing. We propose a new data mining algorithm to be used in this system framework. Finally, we prove the feasibility of this approach by simulation experiment.

하둡 플랫폼을 이용한 대량의 스몰파일 처리방법 (Processing Method of Mass Small File Using Hadoop Platform)

  • 김창복;정재필
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.401-408
    • /
    • 2014
  • 하둡(Hadoop)은 맵리듀스(MapReduce) 분산처리 프로그래밍 모델과 HDFS(Hadoop distributed file system) 분산 파일시스템으로 구성된다. 하둡은 빅데이터 처리에 적합한 프레임워크로서, 대량의 스몰파일 처리에 문제점이 있다. 하둡에서 대량의 스몰파일 처리는 하나의 파일마다 매퍼가 생성되며, 파일의 메타정보를 저장하기 위해 많은 메모리가 필요한 문제점이 있다. 본 논문은 하둡 플랫폼에서 다양한 방법으로 대량의 스몰파일 처리방법을 비교 검토하였다. 일반 압축은 데이터의 크기와 상관없이 하나의 매퍼로 처리해야 하기 때문에, 하둡 처리 포맷으로 적절하지 않다. 시퀀스 와 하둡 아카이브 파일의 처리는 스몰파일을 압축 및 병합을 통해 네임노드의 메모리 문제가 제거되었다. 하둡 아카이브 파일은 스몰파일의 병합시간이 시퀀스 파일보다 빠른 속도를 보였다. CombineFileInputFormat 클래스를 이용한 처리는 병합과정이 필요 없으며, 빅데이터 처리방법과 유사한 속도를 보였다.

MRQUTER: MapReduce 프레임워크를 이용한 병렬 정성 시간 추론기 (MRQUTER : A Parallel Qualitative Temporal Reasoner Using MapReduce Framework)

  • 김종훈;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권5호
    • /
    • pp.231-242
    • /
    • 2016
  • 빠른 웹 정보의 변화에 잘 대응하기 위해서는, 사실과 지식이 실제로 유효한 시간과 장소들도 함께 표현하고 그들 간의 관계도 추론할 수 있도록 웹 기술의 확장이 필요하다. 본 논문에서는 그동안 소규모 지식 베이스를 이용한 실험실 수준의 정성 시간 추론 연구들에서 벗어나, 웹 스케일의 대규모 지식 베이스를 추론할 수 있는 병렬 정성 시간 추론기인 MRQUTER의 설계와 구현을 소개한다. Hadoop 클러스터 시스템과 MapReduce 병렬 프로그래밍 프레임워크를 이용해 개발된 MRQUTER에서는 정성 시간 추론 과정을 인코딩 및 디코딩 작업, 역 관계 및 동일 관계 추론 작업, 이행 관계 추론 작업, 관계 정제 작업 등 몇 개의 MapReduce 작업으로 나누고, 맵 함수와 리듀스 함수로 구현되는 각각의 단위 추론 작업을 효율화하기 위한 최적화 기술들을 적용하였다. 대규모 벤치마킹 시간 지식 베이스를 이용한 실험을 통해, MRQUTER의 높은 추론 성능과 확장성을 확인하였다.

Design an Indexing Structure System Based on Apache Hadoop in Wireless Sensor Network

  • Keo, Kongkea;Chung, Yeongjee
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.45-48
    • /
    • 2013
  • In this paper, we proposed an Indexing Structure System (ISS) based on Apache Hadoop in Wireless Sensor Network (WSN). Nowadays sensors data continuously keep growing that need to control. Data constantly update in order to provide the newest information to users. While data keep growing, data retrieving and storing are face some challenges. So by using the ISS, we can maximize processing quality and minimize data retrieving time. In order to design ISS, Indexing Types have to be defined depend on each sensor type. After identifying, each sensor goes through the Indexing Structure Processing (ISP) in order to be indexed. After ISP, indexed data are streaming and storing in Hadoop Distributed File System (HDFS) across a number of separate machines. Indexed data are split and run by MapReduce tasks. Data are sorted and grouped depend on sensor data object categories. Thus, while users send the requests, all the queries will be filter from sensor data object and managing the task by MapReduce processing framework.

빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼 (RHadoop platform for K-Means clustering of big data)

  • 신지은;오윤식;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.609-619
    • /
    • 2016
  • 본 논문에서는 대용량 데이터를 처리 및 분석하기 위해 RHadoop 플랫폼에서 실제 데이터와 모의 실험 데이터를 가지고 K-평균 클러스터링을 구현하고, MapReduce의 컴바이너 사용여부에 따른 처리 속도를 비교하고자 한다. 또한, K-평균 클러스터링에서 최적의 군집수 결정방법을 MapReduce 프로그램으로 구현하여 실제 데이터에 적용하고자 한다. 그리고 제안된 RHadoop 플랫폼의 확장 가능성을 보이기 위해 실제 데이터에서 R의 기본 패키지에서 kmeans() 함수와 bigmemory 패키지 상에서 유용한 bigkmeans() 함수와 처리 속도를 비교하고자 한다.

빅 데이터의 MapReduce를 이용한 효율적인 병렬 유전자 알고리즘 기법 (The Efficient Method of Parallel Genetic Algorithm using MapReduce of Big Data)

  • 홍성삼;한명묵
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.385-391
    • /
    • 2013
  • 빅 데이터는 일반적으로 사용되는 데이터 관리 시스템으로 데이터의 처리, 수집, 저장, 탐색, 분석을 할 수 없는 큰 규모의 데이터를 말한다. 빅 데이터 기술인 맵 리듀스(MapReduce)를 이용한 병렬 GA 연구는 Hadoop 분산처리환경을 이용하여, 맵 리듀스에서 GA를 수행함으로써 GA의 병렬처리를 쉽게 구현할 수 있다. 기존의 맵 리듀스를 이용한 GA들은 GA를 맵 리듀스에 적절히 변형하여 적용하였지만 잦은 데이터 입출력에 의한 수행시간 지연으로 우수한 성능을 보이지 못하였다. 본 논문에서는 기존의 맵 리듀스를 이용한 GA의 성능을 개선하기 위해, 맵과 리듀싱과정을 개선하여 맵 리듀스 특징을 이용한 새로운 MRPGA(MapReduce Parallel Genetic Algorithm)기법을 제안하였다. 기존의 PGA의 topology 구성과 migration 및 local search기법을 MRPGA에 적용하여 최적해를 찾을 수 있었다. 제안한 기법은 기존에 맵 리듀스 SGA에 비해 수렴속도가 1.5배 빠르며, sub-generation 반복횟수에 따라 최적해를 빠르게 찾을 수 있었다. 또한, MRPGA를 활용하여 빅 데이터 기술의 처리 및 분석 성능을 향상시킬 수 있다.