• 제목/요약/키워드: Hadoop MapReduce Framework

Search Result 46, Processing Time 0.027 seconds

Implementation and Performance Analysis of Hadoop MapReduce over Lustre Filesystem (러스터 파일 시스템 기반 하둡 맵리듀스 실행 환경 구현 및 성능 분석)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Huh, Taesang;Hwang, Soonwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.561-566
    • /
    • 2015
  • Hadoop is becoming widely adopted in scientific and commercial areas as an open-source distributed data processing framework. Recently, for real-time processing and analysis of data, an attempt to apply high-performance computing technologies to Hadoop is being made. In this paper, we have expanded the Hadoop Filesystem library to support Lustre, which is a popular high-performance parallel distributed filesystem, and implemented the Hadoop MapReduce execution environment over the Lustre filesystem. We analysed Hadoop MapReduce over Lustre by using Hadoop standard benchmark tools. We found that Hadoop MapReduce over Lustre execution has a performance 2-13 times better than a typical Hadoop MapReduce execution.

Task failure resilience technique for improving the performance of MapReduce in Hadoop

  • Kavitha, C;Anita, X
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.748-760
    • /
    • 2020
  • MapReduce is a framework that can process huge datasets in parallel and distributed computing environments. However, a single machine failure during the runtime of MapReduce tasks can increase completion time by 50%. MapReduce handles task failures by restarting the failed task and re-computing all input data from scratch, regardless of how much data had already been processed. To solve this issue, we need the computed key-value pairs to persist in a storage system to avoid re-computing them during the restarting process. In this paper, the task failure resilience (TFR) technique is proposed, which allows the execution of a failed task to continue from the point it was interrupted without having to redo all the work. Amazon ElastiCache for Redis is used as a non-volatile cache for the key-value pairs. We measured the performance of TFR by running different Hadoop benchmarking suites. TFR was implemented using the Hadoop software framework, and the experimental results showed significant performance improvements when compared with the performance of the default Hadoop implementation.

A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images (이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템)

  • Bae, Yuseok;Park, Jongyoul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • With the advent of the era of digital big data, the Hadoop platform has become widely used in various fields. However, the Hadoop MapReduce framework suffers from problems related to the increase of the name node's main memory and map tasks for the processing of large number of small files. In addition, a method for running C++-based tasks in the MapReduce framework is required in order to conjugate GPUs supporting hardware-based data parallelism in the MapReduce framework. Therefore, in this paper, we present a face detection system that generates a sequence file for images to process big data for images in the Hadoop platform. The system also deals with tasks for GPU-based face detection in the MapReduce framework using Hadoop Pipes. We demonstrate a performance increase of around 6.8-fold as compared to a single CPU process.

Task Assignment Policy for Hadoop Considering Availability of Nodes (노드의 가용성을 고려한 하둡 태스크 할당 정책)

  • Ryu, Wooseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.103-105
    • /
    • 2017
  • Hadoop MapReduce is a processing framework in which users' job can be efficiently processed in parallel and distributed ways on the Hadoop cluster. MapReduce task schedulers are used to select target nodes and assigns user's tasks to them. Previous schedulers cannot fully utilize resources of Hadoop cluster because they does not consider dynamic characteristics of cluster based on nodes' availability. To increase utilization of Hadoop cluster, this paper proposes a novel task assignment policy for MapReduce that assigns a job tasks to dynamic cluster efficiently by considering availability of each node.

  • PDF

A New Approach to Web Data Mining Based on Cloud Computing

  • Zhu, Wenzheng;Lee, Changhoon
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.181-186
    • /
    • 2014
  • Web data mining aims at discovering useful knowledge from various Web resources. There is a growing trend among companies, organizations, and individuals alike of gathering information through Web data mining to utilize that information in their best interest. In science, cloud computing is a synonym for distributed computing over a network; cloud computing relies on the sharing of resources to achieve coherence and economies of scale, similar to a utility over a network, and means the ability to run a program or application on many connected computers at the same time. In this paper, we propose a new system framework based on the Hadoop platform to realize the collection of useful information of Web resources. The system framework is based on the Map/Reduce programming model of cloud computing. We propose a new data mining algorithm to be used in this system framework. Finally, we prove the feasibility of this approach by simulation experiment.

Processing Method of Mass Small File Using Hadoop Platform (하둡 플랫폼을 이용한 대량의 스몰파일 처리방법)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • Hadoop is composed with MapReduce programming model for distributed processing and HDFS distributed file system. Hadoop is suitable framework for big data processing, but processing of mass small files have many problems. The processing of mass small file in hadoop have problems to created one mapper per one file, and it have problems to needed many memory for store of meta information of file. This paper have comparison evaluation processing method of mass small file with various method in hadoop platform. The processing of general compression format is inadequate because of processing by one mapper regardless of data size. The processing of sequence and hadoop archive file is removed memory problem of namenode by compress and combine of small file. Hadoop archive file is faster then sequence file about combine time of small file. The processing using CombineFileInputFormat class is needed not combine of small file, and it have similar speed big data processing method.

MRQUTER : A Parallel Qualitative Temporal Reasoner Using MapReduce Framework (MRQUTER: MapReduce 프레임워크를 이용한 병렬 정성 시간 추론기)

  • Kim, Jonghoon;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.231-242
    • /
    • 2016
  • In order to meet rapid changes of Web information, it is necessary to extend the current Web technologies to represent both the valid time and location of each fact and knowledge, and reason their relationships. Until recently, many researches on qualitative temporal reasoning have been conducted in laboratory-scale, dealing with small knowledge bases. However, in this paper, we propose the design and implementation of a parallel qualitative temporal reasoner, MRQUTER, which can make reasoning over Web-scale large knowledge bases. This parallel temporal reasoner was built on a Hadoop cluster system using the MapReduce parallel programming framework. It decomposes the entire qualitative temporal reasoning process into several MapReduce jobs such as the encoding and decoding job, the inverse and equal reasoning job, the transitive reasoning job, the refining job, and applies some optimization techniques into each component reasoning job implemented with a pair of Map and Reduce functions. Through experiments using large benchmarking temporal knowledge bases, MRQUTER shows high reasoning performance and scalability.

Design an Indexing Structure System Based on Apache Hadoop in Wireless Sensor Network

  • Keo, Kongkea;Chung, Yeongjee
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.45-48
    • /
    • 2013
  • In this paper, we proposed an Indexing Structure System (ISS) based on Apache Hadoop in Wireless Sensor Network (WSN). Nowadays sensors data continuously keep growing that need to control. Data constantly update in order to provide the newest information to users. While data keep growing, data retrieving and storing are face some challenges. So by using the ISS, we can maximize processing quality and minimize data retrieving time. In order to design ISS, Indexing Types have to be defined depend on each sensor type. After identifying, each sensor goes through the Indexing Structure Processing (ISP) in order to be indexed. After ISP, indexed data are streaming and storing in Hadoop Distributed File System (HDFS) across a number of separate machines. Indexed data are split and run by MapReduce tasks. Data are sorted and grouped depend on sensor data object categories. Thus, while users send the requests, all the queries will be filter from sensor data object and managing the task by MapReduce processing framework.

RHadoop platform for K-Means clustering of big data (빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼)

  • Shin, Ji Eun;Oh, Yoon Sik;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.609-619
    • /
    • 2016
  • RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. In this paper, we implement K-Means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. The main idea introduces a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. We showed that our K-Means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases. We also implemented Elbow method with MapReduce for finding the optimum number of clusters for K-Means clustering on large dataset. Comparison with our MapReduce implementation of Elbow method and classical kmeans() in R with small data showed similar results.

The Efficient Method of Parallel Genetic Algorithm using MapReduce of Big Data (빅 데이터의 MapReduce를 이용한 효율적인 병렬 유전자 알고리즘 기법)

  • Hong, Sung-Sam;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • Big Data is data of big size which is not processed, collected, stored, searched, analyzed by the existing database management system. The parallel genetic algorithm using the Hadoop for BigData technology is easily realized by implementing GA(Genetic Algorithm) using MapReduce in the Hadoop Distribution System. The previous study that the genetic algorithm using MapReduce is proposed suitable transforming for the GA by MapReduce. However, they did not show good performance because of frequently occurring data input and output. In this paper, we proposed the MRPGA(MapReduce Parallel Genetic Algorithm) using improvement Map and Reduce process and the parallel processing characteristic of MapReduce. The optimal solution can be found by using the topology, migration of parallel genetic algorithm and local search algorithm. The convergence speed of the proposal method is 1.5 times faster than that of the existing MapReduce SGA, and is the optimal solution can be found quickly by the number of sub-generation iteration. In addition, the MRPGA is able to improve the processing and analysis performance of Big Data technology.