• Title/Summary/Keyword: Hadoop File System

Search Result 89, Processing Time 0.022 seconds

Processing Method of Mass Small File Using Hadoop Platform (하둡 플랫폼을 이용한 대량의 스몰파일 처리방법)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • Hadoop is composed with MapReduce programming model for distributed processing and HDFS distributed file system. Hadoop is suitable framework for big data processing, but processing of mass small files have many problems. The processing of mass small file in hadoop have problems to created one mapper per one file, and it have problems to needed many memory for store of meta information of file. This paper have comparison evaluation processing method of mass small file with various method in hadoop platform. The processing of general compression format is inadequate because of processing by one mapper regardless of data size. The processing of sequence and hadoop archive file is removed memory problem of namenode by compress and combine of small file. Hadoop archive file is faster then sequence file about combine time of small file. The processing using CombineFileInputFormat class is needed not combine of small file, and it have similar speed big data processing method.

A File Merging Scheme for Efficient Handling of Small Files in Hadoop Distributed File System (Hadoop Distribute file system에서 Small file을 효과적으로 처리하기 위한 파일 병합 기법 연구)

  • Park, Jong-Chang;Youn, Hee-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.15-17
    • /
    • 2013
  • HDFS(Hadoop Distribute File System)는 대용량 파일 처리를 목적으로 설계 되었으며 현재 이상적인 분산 파일 시스템으로 각광 받고 있다. 이러한 HDFS는 기존 분산파일 시스템과 많은 유사성을 가지고 있으나, Fault Tolerance를 제공하고, 데이터 엑세스 패턴을 스트리밍 방식으로 지원하여 대용량 파일을 효율적으로 저장할 수 있다는 차별성을 가지고 있다. 하지만 실제 HDFS 데이터 집합에는 Small file이 차지하는 비중이 상당히 높으며, 이러한 다수의 Small file 은 데이터 처리에 있어 높은 비용을 초래할 뿐 아니라 Master Node 의 파일 처리 및 메모리 성능에 악영향을 미친다. 따라서 본 논문에서는 HDFS에서 Small file 이 미치는 영향을 분석하고 이러한 문제점을 해결 할 수 있는 로컬 인덱스 파일기반의 파일 병합 기법을 제안한다.

Performance Analysis of Distributed Hadoop Systems (분산 하둡 시스템의 성능 비교 분석)

  • Bae, Byoung-Jin;Kim, Young-Joo;Kim, Young-Kuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.479-482
    • /
    • 2014
  • Nowadays open-source hadoop systems have been using widely to efficiently manage a fast-growing big data. Hadoop systems consist of distributed file processing system called HDFS (Hadoop Distributed File System) and distributed parallel processing system called MapReduce. The MapReduce reads and processes big data from HDFS and then processed results are written in HDFS again by the MapReduce. Such a processing method has different system structure respectively according to hadoop version. Therefore, this paper shows analysis results for performance of hadoop systems. For this, we devise a way which monitors hadoop systems and measure occurrence frequency of processes, threads, and variables generated in hadoop system itself using the devised way. So, by using the measured results as analysis indicator, we help the indicator predict inner performance of hadoop systems.

  • PDF

Efficient Multimedia Data File Management and Retrieval Strategy on Big Data Processing System

  • Lee, Jae-Kyung;Shin, Su-Mi;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.77-83
    • /
    • 2015
  • The storage and retrieval of multimedia data is becoming increasingly important in many application areas including record management, video(CCTV) management and Internet of Things (IoT). In these applications, the files containing multimedia that need to be stored and managed is tremendous and constantly scaling. In this paper, we propose a technique to retrieve a very large number of files, in multimedia format, using the Hadoop Framework. Our strategy is based on the management of metadata that describes the characteristic of files that are stored in Hadoop Distributed File System (HDFS). The metadata schema is represented in Hbase and looked up using SQL On Hadoop (Hive, Tajo). Both the Hbase, Hive and Tajo are part of the Hadoop Ecosystem. Preliminary experiment on multimedia data files stored in HDFS shows the viability of the proposed strategy.

Sim-Hadoop : Leveraging Hadoop Distributed File System and Parallel I/O for Reliable and Efficient N-body Simulations (Sim-Hadoop : 신뢰성 있고 효율적인 N-body 시뮬레이션을 위한 Hadoop 분산 파일 시스템과 병렬 I / O)

  • Awan, Ammar Ahmad;Lee, Sungyoung;Chung, Tae Choong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.476-477
    • /
    • 2013
  • Gadget-2 is a scientific simulation code has been used for many different types of simulations like, Colliding Galaxies, Cluster Formation and the popular Millennium Simulation. The code is parallelized with Message Passing Interface (MPI) and is written in C language. There is also a Java adaptation of the original code written using MPJ Express called Java Gadget. Java Gadget writes a lot of checkpoint data which may or may not use the HDF-5 file format. Since, HDF-5 is MPI-IO compliant, we can use our MPJ-IO library to perform parallel reading and writing of the checkpoint files and improve I/O performance. Additionally, to add reliability to the code execution, we propose the usage of Hadoop Distributed File System (HDFS) for writing the intermediate (checkpoint files) and final data (output files). The current code writes and reads the input, output and checkpoint files sequentially which can easily become bottleneck for large scale simulations. In this paper, we propose Sim-Hadoop, a framework to leverage HDFS and MPJ-IO for improving the I/O performance of Java Gadget code.

A Study on Security Improvement in Hadoop Distributed File System Based on Kerberos (Kerberos 기반 하둡 분산 파일 시스템의 안전성 향상방안)

  • Park, So Hyeon;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.803-813
    • /
    • 2013
  • As the developments of smart devices and social network services, the amount of data has been exploding. The world is facing Big data era. For these reasons, the Big data processing technology which is a new technology that can handle such data has attracted much attention. One of the most representative technologies is Hadoop. Hadoop Distributed File System(HDFS) designed to run on commercial Linux server is an open source framework and can store many terabytes of data. The initial version of Hadoop did not consider security because it only focused on efficient Big data processing. As the number of users rapidly increases, a lot of sensitive data including personal information were stored on HDFS. So Hadoop announced a new version that introduces Kerberos and token system in 2009. However, this system is vulnerable to the replay attack, impersonation attack and other attacks. In this paper, we analyze these vulnerabilities of HDFS security and propose a new protocol which complements these vulnerabilities and maintains the performance of Hadoop.

Design of a Sentiment Analysis System to Prevent School Violence and Student's Suicide (학교폭력과 자살사고를 예방하기 위한 감성분석 시스템의 설계)

  • Kim, YoungTaek
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • One of the problems with current youth generations is increasing rate of violence and suicide in their school lives, and this study aims at the design of a sentiment analysis system to prevent suicide by uising big data process. The main issues of the design are economical implementation, easy and fast processing for the users, so, the open source Hadoop system with MapReduce algorithm is used on the HDFS(Hadoop Distributed File System) for the experimentation. This study uses word count method to do the sentiment analysis with informal data on some sns communications concerning a kinds of violent words, in terms of text mining to avoid some expensive and complex statistical analysis methods.

  • PDF

A Performance Analysis Based on Hadoop Application's Characteristics in Cloud Computing (클라우드 컴퓨팅에서 Hadoop 애플리케이션 특성에 따른 성능 분석)

  • Keum, Tae-Hoon;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, we implement a Hadoop based cluster for cloud computing and evaluate the performance of this cluster based on application characteristics by executing RandomTextWriter, WordCount, and PI applications. A RandomTextWriter creates given amount of random words and stores them in the HDFS(Hadoop Distributed File System). A WordCount reads an input file and determines the frequency of a given word per block unit. PI application induces PI value using the Monte Carlo law. During simulation, we investigate the effect of data block size and the number of replications on the execution time of applications. Through simulation, we have confirmed that the execution time of RandomTextWriter was proportional to the number of replications. However, the execution time of WordCount and PI were not affected by the number of replications. Moreover, the execution time of WordCount was optimum when the block size was 64~256MB. Therefore, these results show that the performance of cloud computing system can be enhanced by using a scheduling scheme that considers application's characteristics.

A Digital Secret File Leakage Prevention System via Hadoop-based User Behavior Analysis (하둡 기반의 사용자 행위 분석을 통한 기밀파일 유출 방지 시스템)

  • Yoo, Hye-Rim;Shin, Gyu-Jin;Yang, Dong-Min;Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1544-1553
    • /
    • 2018
  • Recently internal information leakage in industries is severely increasing in spite of industry security policy. Thus, it is essential to prepare an information leakage prevention measure by industries. Most of the leaks result from the insiders, not from external attacks. In this paper, a real-time internal information leakage prevention system via both storage and network is implemented in order to protect confidential file leakage. In addition, a Hadoop-based user behavior analysis and statistics system is designed and implemented for storing and analyzing information log data in industries. The proposed system stores a large volume of data in HDFS and improves data processing capability using RHive, consequently helps the administrator recognize and prepare the confidential file leak trials. The implemented audit system would be contributed to reducing the damage caused by leakage of confidential files inside of the industries via both portable data media and networks.

Design on the IoT Sensor Data Collection Envionment using Lambda Architecture (Lambda 구조를 적용한 IoT 센서 데이터 수집 환경 설계)

  • Hwang, Yun-Young;Kim, Soo-Hyun;Shin, Yong-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.547-548
    • /
    • 2020
  • 데이터의 양은 기술의 발전과 함께 크게 증가하였다. Hadoop은 빅데이터 분야에서 사용되는 대표적인 빅데이터 처리 플랫폼으로 IoT 분야에서도 사용된다. HDFS(Haddop Distributed File System)는 Hadoop의 코어 프로젝트로 블록 기반의 대용량 데이터 저장소다. 기존의 Hadoop 기반 IoT 센서 데이터 수집 환경은 HDFS를 사용한다. 그러나 HDFS의 Small File로 인한 네임노드의 과부하 문제와 한 번 Import된 데이터의 Update와 Delete를 지원하지 않는 Hadoop의 특징으로 인해 성능과 활용이 제한적이다. 본 논문에서는 기존 Hadoop 기반 IoT 센서 데이터 수집 환경의 단점을 극복하기 위해 Lambda 구조를 적용한 IoT 센서 데이터 수집 환경을 설계한다.

  • PDF