하둡(Hadoop)은 맵리듀스(MapReduce) 분산처리 프로그래밍 모델과 HDFS(Hadoop distributed file system) 분산 파일시스템으로 구성된다. 하둡은 빅데이터 처리에 적합한 프레임워크로서, 대량의 스몰파일 처리에 문제점이 있다. 하둡에서 대량의 스몰파일 처리는 하나의 파일마다 매퍼가 생성되며, 파일의 메타정보를 저장하기 위해 많은 메모리가 필요한 문제점이 있다. 본 논문은 하둡 플랫폼에서 다양한 방법으로 대량의 스몰파일 처리방법을 비교 검토하였다. 일반 압축은 데이터의 크기와 상관없이 하나의 매퍼로 처리해야 하기 때문에, 하둡 처리 포맷으로 적절하지 않다. 시퀀스 와 하둡 아카이브 파일의 처리는 스몰파일을 압축 및 병합을 통해 네임노드의 메모리 문제가 제거되었다. 하둡 아카이브 파일은 스몰파일의 병합시간이 시퀀스 파일보다 빠른 속도를 보였다. CombineFileInputFormat 클래스를 이용한 처리는 병합과정이 필요 없으며, 빅데이터 처리방법과 유사한 속도를 보였다.
HDFS(Hadoop Distribute File System)는 대용량 파일 처리를 목적으로 설계 되었으며 현재 이상적인 분산 파일 시스템으로 각광 받고 있다. 이러한 HDFS는 기존 분산파일 시스템과 많은 유사성을 가지고 있으나, Fault Tolerance를 제공하고, 데이터 엑세스 패턴을 스트리밍 방식으로 지원하여 대용량 파일을 효율적으로 저장할 수 있다는 차별성을 가지고 있다. 하지만 실제 HDFS 데이터 집합에는 Small file이 차지하는 비중이 상당히 높으며, 이러한 다수의 Small file 은 데이터 처리에 있어 높은 비용을 초래할 뿐 아니라 Master Node 의 파일 처리 및 메모리 성능에 악영향을 미친다. 따라서 본 논문에서는 HDFS에서 Small file 이 미치는 영향을 분석하고 이러한 문제점을 해결 할 수 있는 로컬 인덱스 파일기반의 파일 병합 기법을 제안한다.
오늘날 급증하는 빅데이터를 효율적으로 관리하기 위해 오픈소스인 하둡을 많이 사용한다. 하둡은 분산 파일 처리 시스템인 HDFS(Hadoop Distributed File System)와 분산 병렬 처리 시스템인 맵리듀스(MapReduce)로 구성되어 있다. 하둡의 맵리듀스 프레임워크에서는 빅데이터를 HDFS에서 읽어들이고 분석 처리된 결과를 다시 HDFS에 쓴다. 이러한 분산 병렬 처리 방식은 하둡 버전에 따라 다른 시스템 구조를 가진다. 따라서 본 논문에서는 하둡 버전에 따른 빅데이터 처리 시에 동작하는 하둡시스템들의 내부 성능을 비교 분석한다. 이를 위해서 하둡 시스템을 감시할 수 있는 방법을 고안하여 내부적으로 생성되는 프로세스 및 스레드들과 변수들의 발생빈도를 측정하여 분석 지표로 사용한다.
The storage and retrieval of multimedia data is becoming increasingly important in many application areas including record management, video(CCTV) management and Internet of Things (IoT). In these applications, the files containing multimedia that need to be stored and managed is tremendous and constantly scaling. In this paper, we propose a technique to retrieve a very large number of files, in multimedia format, using the Hadoop Framework. Our strategy is based on the management of metadata that describes the characteristic of files that are stored in Hadoop Distributed File System (HDFS). The metadata schema is represented in Hbase and looked up using SQL On Hadoop (Hive, Tajo). Both the Hbase, Hive and Tajo are part of the Hadoop Ecosystem. Preliminary experiment on multimedia data files stored in HDFS shows the viability of the proposed strategy.
Gadget-2 is a scientific simulation code has been used for many different types of simulations like, Colliding Galaxies, Cluster Formation and the popular Millennium Simulation. The code is parallelized with Message Passing Interface (MPI) and is written in C language. There is also a Java adaptation of the original code written using MPJ Express called Java Gadget. Java Gadget writes a lot of checkpoint data which may or may not use the HDF-5 file format. Since, HDF-5 is MPI-IO compliant, we can use our MPJ-IO library to perform parallel reading and writing of the checkpoint files and improve I/O performance. Additionally, to add reliability to the code execution, we propose the usage of Hadoop Distributed File System (HDFS) for writing the intermediate (checkpoint files) and final data (output files). The current code writes and reads the input, output and checkpoint files sequentially which can easily become bottleneck for large scale simulations. In this paper, we propose Sim-Hadoop, a framework to leverage HDFS and MPJ-IO for improving the I/O performance of Java Gadget code.
최근 스마트 기기 및 소셜 네트워크 서비스의 발달로 인해 데이터가 폭증하며 세계는 이른바 빅데이터 시대를 맞고 있다. 이에 이러한 데이터를 처리할 수 있는 새로운 기술인 빅데이터 처리기술은 클라우드 컴퓨팅 기술과 함께 주목받고 있으며, 가장 대표적인 기술이 바로 하둡이다. 하둡 분산 파일 시스템은 상용 리눅스 서버에서 실행되도록 설계된 오픈소스 프레임워크로서 수백 테라바이트 크기의 파일을 저장할 수 있다. 초기 하둡은 빅데이터 처리에 초점을 맞추어 보안이 거의 도입되지 않은 상태였으나 사용자가 빠르게 늘어남에 따라 하둡 분산 파일 시스템에 개인정보를 포함한 민감한 데이터가 많이 저장되면서, 2009년 커버로스와 토큰 시스템을 도입한 새로운 버전을 발표하였다. 그러나 이 시스템은 재전송 공격, 가장 공격 등이 가능하다는 취약점을 가진다. 따라서 본 논문에서는 하둡 분산 파일 시스템 보안 취약점을 분석하고, 이러한 취약점을 보완하면서 하둡의 성능을 유지할 수 있는 새로운 프로토콜을 제안한다.
현 청소년들의 학교내 생활환경에서 문제점으로 대두되는 폭력 및 자살사고 발생률 증가에 대한 예방차원의 빅 데이터 처리 분석 시스템을 목표로 연구하였고 설계의 경제성과 용이성, 적용의 신속성 등을 고려해서 많은 이용률을 가지고 있는 오픈 소스인, 하둡 시스템(Hadoop system)의 맵리듀스(MapReduce) 알고리즘과 분산 병렬 환경을 위한 HDFS(Hadoop Distibuted File System) 구성을 사용하여 실험하였다. 연구에서 사용된 분석기법은 기존의 통계적인 분석기법들이 가지는 난이도를 피하기 위해 상업적인 사회 망의 비정형 대화 자료를 이용해서 폭력성 어휘에 대한 단어 수(word count) 분석을 적용하여 폭행, 자살사고를 사전에 감지하여 예방하는 감성분석(sentiment analysis) 시스템을 텍스트 마이닝 관점에서 제안하여 실험하였다.
본 논문에서는 클라우드 컴퓨팅을 위해 Hadoop 기반의 클러스터를 구축하고, RandomTextWriter, WordCount, PI 애플리케이션을 수행함으로써 애플리케이션 특성에 따른 클러스터의 성능을 평가한다. RandomTextWriter는 주어진 용량만큼 임의의 단어를 생성하여 HDFS에 저장하는 애플리케이션이고, WordCount는 입력 파일을 읽어서 블록 단위로 단어 빈도수를 계산하는 애플리케이션이다. 그리고 PI는 몬테카를로법을 사용하여 PI 값을 유도하는 애플리케이션이다. 이러한 애플리케이션을 실행시키면서 데이터 블록 크기와 데이터 복제본 수 증가에 따른 애플리케이션의 수행시간을 측정한다. 시뮬레이션을 통하여 RandomTextWriter 애플리케이션은 데이터 복제본 수 증가에 비례하여 수행시간이 증가함을 알 수 있었다. 반면에 WordCount와 PI 애플리케이션은 데이터 복제본 수에 큰 영향을 받지 않았다. 또한 WordCount 애플리케이션은 블록 크기가 64~256MB 일 때 최적의 수행시간을 얻을 수있었다. 따라서 이러한 애플리케이션의 특성을 고려한 스케줄링 정책을 개발한다면 애플리케이션의 실행시간을 단축하여 클라우드 컴퓨팅 시스템의 성능을 향상시킬 수 있음을 보인다.
최근 산업 보안 정책에도 불구하고 기업의 내부 정보 유출이 심각하게 증가하여 산업별로 정보 유출 방지 대책을 수립하는 것이 필수적이다. 대부분의 정보 유출은 외부 공격이 아닌 내부자에 의해 이루어지고 있다. 본 논문에서는 이동식 저장매체 및 네트워크를 통한 기밀 파일 유출방지를 위한 실시간 내부 정보 유출 방지 시스템을 구현하였다. 또한, 기업 내의 정보 로그 데이터의 저장 및 분석을 위해 Hadoop 기반 사용자 행동 분석 및 통계시스템을 설계 및 구현하였다. 제안한 시스템은 HDFS에 대량의 데이터를 저장하고 RHive를 사용하여 데이터 처리 기능을 개선함으로써 관리자가 기밀 파일 유출 시도를 인식하고 분석할 수 있도록 하였다. 구현한 시스템은 이동식 데이터 매체와 네트워크를 통해 기업 내부로의 기밀 파일 유출로 인한 피해를 줄이는 데 기여할 수 있을 것으로 사료된다.
데이터의 양은 기술의 발전과 함께 크게 증가하였다. Hadoop은 빅데이터 분야에서 사용되는 대표적인 빅데이터 처리 플랫폼으로 IoT 분야에서도 사용된다. HDFS(Haddop Distributed File System)는 Hadoop의 코어 프로젝트로 블록 기반의 대용량 데이터 저장소다. 기존의 Hadoop 기반 IoT 센서 데이터 수집 환경은 HDFS를 사용한다. 그러나 HDFS의 Small File로 인한 네임노드의 과부하 문제와 한 번 Import된 데이터의 Update와 Delete를 지원하지 않는 Hadoop의 특징으로 인해 성능과 활용이 제한적이다. 본 논문에서는 기존 Hadoop 기반 IoT 센서 데이터 수집 환경의 단점을 극복하기 위해 Lambda 구조를 적용한 IoT 센서 데이터 수집 환경을 설계한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.