• 제목/요약/키워드: Hadoop, Spark

검색결과 52건 처리시간 0.021초

하둡 및 Spark 기반 공간 통계 핫스팟 분석의 분산처리 방안 연구 (Distributed Processing Method of Hotspot Spatial Analysis Based on Hadoop and Spark)

  • 김창수;이주섭;황규문;성효진
    • 정보과학회 논문지
    • /
    • 제45권2호
    • /
    • pp.99-105
    • /
    • 2018
  • 공간통계 분석중 하나인 핫스팟 분석은 "인접해 있는 것은 멀리 있는 것 보다 더 연관성이 있다"는 법칙에 따라 공간속성이나 사건의 공간 패턴을 쉽게 파악할 수 있는 기법 중 하나 이지만, 공간의 인접성이 고려되어야 하므로 분산 처리하기 용이하지 않다. 본 논문에서는 핫스팟 분석의 분산처리 방안을 기술하고 성능을 하둡 및 인메모리 기반인 Spark으로 평가한 결과 단일 시스템 대비 하둡기반 처리는 625.89%, Spark기반 처리는 870.14%의 성능향상을 확인하였으며, 하둡 기반과 Spark기반의 비교에서는 대용량 데이터 셋을 처리 할수록 Spark기반의 성능향상율이 높아짐을 확인하였다.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

A Survey on the Performance Comparison of Map Reduce Technologies and the Architectural Improvement of Spark

  • Raghavendra, GS;Manasa, Bezwada;Vasavi, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.121-126
    • /
    • 2022
  • Hadoop and Apache Spark are Apache Software Foundation open source projects, and both of them are premier large data analytic tools. Hadoop has led the big data industry for five years. The processing velocity of the Spark can be significantly different, up to 100 times quicker. However, the amount of data handled varies: Hadoop Map Reduce can process data sets that are far bigger than Spark. This article compares the performance of both spark and map and discusses the advantages and disadvantages of both above-noted technologies.

GPGPU를 활용한 스파크 기반 공간 연산 (Spatial Computation on Spark Using GPGPU)

  • 손찬승;김대희;박능수
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권8호
    • /
    • pp.181-188
    • /
    • 2016
  • 최근 급격히 증가하는 공간 데이터를 효율적으로 처리하기 위해 많은 연구들이 진행되고 있다. 기존 관계형 데이터베이스 시스템을 확장한 공간 데이터베이스 시스템은 확장성에 대한 문제가 있으며, 분산 처리 플랫폼인 하둡을 확장한 SpatialHadoop은 중간 연산 결과를 디스크에 작성하기 때문에 파일 입출력의 오버헤드로 성능이 저하되는 문제가 있다. 본 논문은 인-메모리 기반 분산 처리 프레임워크인 스파크를 확장한 공간 연산 스파크를 제안하였다. 또한 공간 연산 스파크의 성능을 향상시키기 위하여 GPGPU를 결합한 모델을 개발하였다. 공간 연산 스파크는 중간 연산 결과를 메모리에 유지시키는 스파크의 특징을 그대로 사용하고 있으며, GPGPU 기반 공간 연산 스파크의 경우 다수의 PE를 이용하여 병렬처리하기 때문에 효율적으로 공간 연산을 수행할 수 있다. 본 논문은 단일 AMD 시스템에서 공간 연산 스파크와 GPGPU 기반 공간 연산 스파크를 구현하였다. 공간 연산 스파크와 GPGPU 기반 공간 연산 스파크의 성능을 평가하기 위하여 Point-in-Polygon 연산과 Spatial Join 연산을 수행하였으며, SpatialHadoop에 비하여 최대 8배의 성능 향상을 확인하였다.

Spark 기반에서 Python과 Scala API의 성능 비교 분석 (Performance Comparison of Python and Scala APIs in Spark Distributed Cluster Computing System)

  • 지경엽;권영미
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.241-246
    • /
    • 2020
  • Hadoop is a framework to process large data sets in a distributed way across clusters of nodes. It has been a popular platform to process big data, but in recent years, other platforms became competitive ones depending on the characteristics of the application. Spark is one of distributed platforms to enable real-time data processing and improve overall processing performance over Hadoop by introducing in-memory processing instead of disk I/O. Whereas Hadoop is designed to work on Java and data analysis is processed using Java API, Spark provides a variety of APIs with Scala, Python, Java and R. In this paper, the goal is to find out whether the APIs of different programming languages af ect the performances in Spark. We chose two popular APIs: Python and Scala. Python is easy to learn and is used in AI domain in a wide range. Scala is a programming language with advantages of parallelism. Our experiment shows much faster processing with Scala API than Python API. For the performance issues on AI-based analysis, further study is needed.

Anomalous Pattern Analysis of Large-Scale Logs with Spark Cluster Environment

  • Sion Min;Youyang Kim;Byungchul Tak
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.127-136
    • /
    • 2024
  • 본 연구는 Spark 클러스터 환경에서 대용량 로그를 분석하여 시스템 이상과의 연관성을 탐색한다. 로그를 활용한 이상 감지 연구는 증가하고 있으나, 클러스터의 다양한 컴포넌트의 로그를 충분히 활용하지 못하고 이상과 시스템의 연관성을 고려하지 않는다는 한계가 있다. 따라서 본 논문에서는 정상과 비정상 로그의 분포를 분석하고, 로그 템플릿의 출현 여부를 통해 이상 감지 가능성을 탐색한다. Hadoop과 Spark를 활용하여 정상과 비정상 로그 데이터를 생성하고, t-SNE와 K-means 클러스터링을 통해 비정상 상황에서의 로그 템플릿을 찾아 이상 현상을 파악한다. 결과적으로, 비정상 상황에서만 발생하는 고유한 로그 템플릿을 확인하며 이를 통해 이상 현상 감지의 가능성을 제시한다.

Hadoop과 Spark를 이용한 실시간 Hybrid IDS 로그 분석 시스템에 대한 설계 (Design of Hybrid IDS(Intrusion Detection System) Log Analysis System based on Hadoop and Spark)

  • 유지훈;윤호상;신동일;신동규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.217-219
    • /
    • 2017
  • 나날이 증가하는 해킹의 위협에 따라 이를 방어하기 위한 침임 탐지 시스템과 로그 수집 분야에서 많은 연구가 진행되고 있다. 이러한 연구들로 인해 다양한 종류의 침임 탐지 시스템이 생겨났으며, 이는 다양한 종류의 침입 탐지 시스템에서 서로의 단점을 보안할 필요성이 생기게 되었다. 따라서 본 논문에서는 네트워크 기반인 NIDS(Network-based IDS)와 호스트 기반인 HIDS(Host-based IDS)의 장단점을 가진 Hybrid IDS을 구성하기 위해 NIDS와 HIDS의 로그 데이터 통합을 위해 실시간 로그 처리에 특화된 Kafka를 이용하고, 실시간 분석에 Spark Streaming을 이용하여 통합된 로그를 분석하게 되며, 실시간 전송 도중에 발생되는 데이터 유실에 대해 별도로 저장되는 Hadoop의 HDFS에서는 데이터 유실에 대한 보장을 하는 실시간 Hybrid IDS 분석 시스템에 대한 설계를 제안한다.

Appingpot : 하둡 및 스파크를 활용한 어플리케이션 큐레이션 플랫폼 (Appingpot : Application curation platform based on Hadoop and Spark)

  • 전상우;심의석;지정희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.372-373
    • /
    • 2016
  • 현재 해외뿐만 아니라 국내에서도 큐레이션 서비스가 활발히 운영중이다. 폭발적으로 증가한 어플리케이션 마켓 시장에서 사용자들은 자신에게 맞는 앱을 찾고 설치하기 어려워지고 있다. 이에 대응하여 본 논문에서는 어플리케이션 큐레이션 서비스인 Appingpot 시스템을 제안한다. Appingpot에서는 사용자들로부터 수집된 앱 로그데이터와 Facebook 친구 정보를 기반으로 Hadoop과 Spark를 통해 사용자들에게 적합한 앱을 추천하는 서비스를 제공한다.

Spark SQL 기반 고도 분석 지원 프레임워크 설계 (Design of Spark SQL Based Framework for Advanced Analytics)

  • 정재화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권10호
    • /
    • pp.477-482
    • /
    • 2016
  • 기업의 신속한 의사결정 및 전략적 정책 결정을 위해 빅데이터에 대한 고도 분석이 필수적으로 요구됨에 따라 대량의 데이터를 복수의 노드에 분산하여 처리하는 하둡 또는 스파크와 같은 분산 처리 플랫폼이 주목을 받고 있다. 최근 공개된 Spark SQL은 Spark 환경에서 SQL 기반의 분산 처리 기법을 지원하고 있으나, 기계학습이나 그래프 처리와 같은 반복적 처리가 요구되는 고도 분석 분야에서는 효율적 처리가 불가능한 문제가 있다. 따라서 본 논문은 이러한 문제점을 바탕으로 Spark 환경에서 고도 분석 지원을 위한 SQL 기반의 빅데이터 최적처리 엔진설계와 처리 프레임워크를 제안한다. 복수의 조건과 다수의 조인, 집계, 소팅 연산이 필요한 복합 SQL 질의를 분산/병행적으로 처리할 수 있는 최적화 엔진과 관계형 연산을 지원하는 기계학습 최적화하기 위한 프레임워크를 설계한다.

A Development of LDA Topic Association Systems Based on Spark-Hadoop Framework

  • Park, Kiejin;Peng, Limei
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.140-149
    • /
    • 2018
  • Social data such as users' comments are unstructured in nature and up-to-date technologies for analyzing such data are constrained by the available storage space and processing time when fast storing and processing is required. On the other hand, it is even difficult in using a huge amount of dynamically generated social data to analyze the user features in a high speed. To solve this problem, we design and implement a topic association analysis system based on the latent Dirichlet allocation (LDA) model. The LDA does not require the training process and thus can analyze the social users' hourly interests on different topics in an easy way. The proposed system is constructed based on the Spark framework that is located on top of Hadoop cluster. It is advantageous of high-speed processing owing to that minimized access to hard disk is required and all the intermediately generated data are processed in the main memory. In the performance evaluation, it requires about 5 hours to analyze the topics for about 1 TB test social data (SNS comments). Moreover, through analyzing the association among topics, we can track the hourly change of social users' interests on different topics.