• Title/Summary/Keyword: Hadley Center

Search Result 5, Processing Time 0.023 seconds

Trends in Sea Surface Temperature (SST) Change Near the Korean Peninsula for the Past 130 Years (지난 130년 간 한반도 근해의 표층 수온 변화 경향)

  • Kim, Seong-Joong;Woo, Sung-Ho;Kim, Baek-Min;Hur, Soon-Do
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.281-290
    • /
    • 2011
  • This study examined the change in sea surface temperature (SST) around the Korean peninsula since industrialization at year 1880, and its possible causes using observation based data from the Hadley Center, the Goddard Institute of Space Studies, and National Climate Data Center. Since year 1880, There have been multi-decadal fluctuations with a gradual reduction from 1880 to around 1940, and from 1950-1980. There has then been a marked increase from 1940-1950, and from 1980 to the present. The ocean surface warming is larger during the boreal winter than summer, and greater in the south. The multi-decadal SST fluctuations around the Korean Peninsula are largely consistent with the negative phase of the Pacific Decadal Oscillation (PDO), which fluctuates with periods of about 20-50 years. Secondly, the El Ni$\tilde{n}$o-Southern Oscillation (ENSO), whose long period component moves along with the PDO, appears to influence the SST near the Korean Peninsula, especially in recent decades. Overall, the SST around the Korean Peninsula has warmed since year 1880 by about $1^{\circ}C$, which is about twice the global-mean ocean surface warming. This long-term warming is aligned with an increase in greenhouse gas concentration, as well as local factors such as the PDO.

Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia (CMIP5 GCM의 동아시아 해안지역에 대한 공간적 강우특성 재현성 평가)

  • Hwang, Syewoon;Cho, Jeapil;Yoon, Kwang Sik
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.629-642
    • /
    • 2018
  • Future variability of the spatial patterns of rainfall events is the point of water-related risks and impacts of climate change. Recent related researches are mostly conducted based on the outcomes from General Circulation Models (GCMs), especially Coupled Model Intercomparison Project, phase 5 (CMIP5) GCMs which are the most advanced version of climate modeling system. GCM data have been widely used for various studies as the data utility keep getting improved. Meanwhile the model performances especially for raw GCM outputs are rarely evaluated prior to the applications although the process would essential for reasonable use of model forecasts. This study attempt to quantitatively evaluate the skills of 29 CMIP5 GCMs in reproducing spatial climatologies of precipitation in East Asia. We used 3 different gridded observational data as the references available over the study area and calculated correlation and errors of spatial patterns simulated by GCMs. As a result, the study presented diversity of the GCM evaluation in the performance, rank, or accuracy by different configurations, such as target area, evaluation method, and observation data. Yet, we found that Hadley-centre affiliated models comparatively performs better for the meso-scale area in East Asia and MPI_ESM_MR and CMCC family showed better performance specifically for the korean peninsula. We expect that the results and thoughts of this study would be considered in screening suitable GCMs for specific area, and finally contribute to extensive utilization of the results from climate change related researches.

The expectation of future cooling and heating degree day of the Seoul and Ulsan using HadCM3 (HadCM3를 이용한 서울 및 울산지역의 미래 냉.난방도일 예측)

  • Lee, Kwan-Ho;Yoo, Ho-Chun;Noh, Kyoung-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.160-165
    • /
    • 2008
  • The concern in energy reduction in the field of architecture which takes up a big weight in domestic energy consumption is gradually increasing. For this reason, a lot of research work on this matter is being carried out. Particularly, it is generally required that currently used system in a structure for energy reduction should be maximized in its efficiency. In addition, research on several energy reduction typed systems is underway. Such a research work should not only include the one in time of the present but also keep up with the trend for future-oriented research. This research paper forecasted and analyzed the trend for global warming and demand of a structure for energy in the future by applying climate scenarios to cooling degree-day and heating degree-day. Also, this research found out the decrease in heating degree-days and increase in cooling degree-days until this moment due to the progress of global warming. In addition, as for heating degree-days in the future forecasted on the basis of HadCM3, it is estimated that the range of decrease could be ever bigger starting 2040 in case of Seoul and also starting 2010 in case of Ulsan ever after respectively. In case of cooling degree-days, it is estimated that its increase range could be bigger abruptly starting 2050, and after 2080, its increase range would be much bigger.

  • PDF

Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia (CMIP5 GCM의 동아시아 해안지역에 대한 공간적 강우특성 재현성 평가)

  • Hwang, Syewoon;Cho, Jeapil;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.360-360
    • /
    • 2018
  • 기후변화에 따른 강우특성의 변화는 다양한 기상이변과 극한사상의 발현으로 사회적 관심이 높아지고 있는 이슈이다. 일반적인 기후변화 연구는 전지구 기후 모델 (GCM, General Circulation Model) 산출물에 기반하여 생산된 미래 기상정보를 바탕으로 이루어진다. 최근 국내 연구에서 주로 활용되는 자료는 IPCC 5차보고서(AR5)의 과학적 기반자료로 활용되는 CMIP5(Coupled Model Intercomparison Project, phase 5) GCM 산출물이다. 수자원, 농업, 경제의 다양한 분야에서 기후변화 영향평가가 심층적으로 이루어지고 있는 가운데 미래기간에 대한 GCM 산출물에 대한 신뢰성에 대한 평가 연구는 상대적으로 미흡한 실정이다. 모델의 신뢰성은 산출물의 실제 현상에 대한 재현성을 평가함으로서 가늠할 수 있다. 본 연구에서는 한반도 지역에 대한 전지구 모델의 성능을 평가하기 위해 동아시아 지역의 격자단위 관측자료를 수집하여 과거기간(1970~2005)에 대한 강우특성 공간분포를 분석하고 이에 대한 GCM 산출물의 재현성을 평가하였다. 위도와 경도에 따른 강우특성의 공간적 변동성에 대한 GCM 결과의 상관성과 평균/절대오차를 산정하여 29개 CMIP5 GCM의 순위를 결정하여 제시하였다. 이 분석은 동아시아 해안지역과 한반도 지역을 구분하고 다양한 강우특성에 대한 재현성을 통합적으로 고려하여 이루어졌다. 연구 결과 오차 통계와 대상지역에 따라 GCM 순위가 상이하게 나타났으며 특히 공간분포의 패턴과 절대적 오차를 기준으로 판단한 GCM 순위가 크게 다르게 나타났다. 대체로 Hadley Centre 계열 모델의 동아시아 지역에 대한 강우특성 재현성이 높게 나타났으며 한반도 지역만을 대상으로 평가했을 때 MPI_ESM_MR과 CMCC center 계열 모델의 재현성이 높게 나타났다. 본 연구결과는 향후 한반도 지역의 기후변화 영향평가에 가중있게 고려되어야 할 GCM의 선정과 GCM 성능고려에 따른 기후변화 예측 불확실성 평가에 적용될 수 있으며 다양한 영향평가 연구결과의 신뢰도 제고에 기여할 것으로 기대된다.

  • PDF

Uncertainty in the Estimation of Arctic Surface Temperature during Early 1900s Revealed by the Comparison between HadCRU4 and 20CR Reanalysis (HadCRU4 관측 온도자료와 20CR 재분석 자료 비교로부터 확인된 1900년대 초반 극지역 평균 온도 추정의 불확실성)

  • Kim, Baek-Min;Kim, Jin-Young
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • To discuss whether we have credible estimations about historical surface temperature evolution since industrial revolution or not, present study investigates consistencies and differences of averaged surface air temperature since 1900 between the multiple data sources: Hadley Center Climate Research Unit (HadCRU4) surface air temperature data, ECMWF 20 Century Reanalysis data (ERA20CR), and NCEP 20 Century Reanalysis data (NCEP20CR). Averaged surface temperatures are obtained for the global, polar (90S~60S, 60N~0N), midlatitude (60S~30S, 30N~60N), tropical (30S~30N) region, separately. From the analysis, we show that: 1) spatio-temporal inhomogenity and scarcity of HadCRU4 data are not major obstacles in the reliable estimation of global surface air temperature. 2) Globally averaged temperature variability is largely contributed by those of tropical and midlatitude, which occupy more than 70% of earth surface in area. 3) Both data show consistent temperature variability in tropical region. 4) ERA20CR does not capture warm period over Arctic region in early 1900s, which is obvious feature in HadCRU4 data. Discrepancies among datasets suggest that high-level caution is needed especially in the interpretation of large Arctic warming in the early 1900s, which is often regarded as a natural variability in the Arctic region.