• Title/Summary/Keyword: Haccke's FOM

Search Result 2, Processing Time 0.014 seconds

A Study on the Exothermic Properties of ITO/Ag/ITO Multilayer Transparent Electrode Depending on Metal Layer Thickness (금속층 두께에 따른 ITO/Ag/ITO 다층 투명 전극의 발열 특성 연구)

  • Min, Hye-Jin;Kang, Ye-Jina;Son, Hye-Won;Sin, So-Hyun;Hwang, Min-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • In this study, we investigated the optical, electrical and exothermic characteristics of ITO/Ag/ITO multilayer structures prepared with various Ag thicknesses on quartz and PI substrates. The transparent conducting properties of the ITO/Ag/ITO multilayer films depended on the thickness of the mid-layer metal film. The ITO/Ag (14 nm)/ITO showed the highest Haccke's figure of merit (FOM) of approximately 19.3×10-3 Ω-1. In addition, the exothermic property depended on the substrate. For an applied voltage of 3.7 V, the ITO/Ag (14 nm)/ITO multilayers on quartz and PI substrates were heated up to 110℃ and 200℃, respectively. The bending tests demonstrated a comparable flexibility of the ITO/Ag/IT multilayer to other transparent electrodes, indicating the potential of ITO/Ag/ITO multilayer as a flexible transparent conducting heater.

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature (열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.