• Title/Summary/Keyword: Habitat conditions

Search Result 428, Processing Time 0.027 seconds

Effects of Habitat Disturbance on Fish Community Structure in a Gravel-Bed Stream, Korea (자갈하천에서 서식처 교란이 어류 군집구조에 미치는 영향)

  • Kim, Seog Hyun;Lee, Wan-Ok;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.49-60
    • /
    • 2014
  • Fish assemblages play an integral role in stream ecosystem and are influenced by stream environmental conditions and habitat disturbances. Fish community structures and habitat parameters of U.S. EPA rapid bio-assessment protocol were surveyed to investigate the effect of stream environment and habitat disturbance on fish communities at 13 study sites in the Gapyeong Stream, a typical gravel-bed stream. Principal component analysis (PCA) based on data from habitat assessment at each study site indicated that the study sites were differentiated by habitat parameters such as embeddedness, velocity/depth regime and sediment deposition, which were related with bed slope. A total of 46 species belonging to 12 families were collected in the Gapyeong Stream. A dominant species was Zacco koreanus, subdominant species was Z. platypus. Hierarchical cluster analysis based on species abundance classified fish communities into the three main groups along the stream longitudinal change. Non-metric multidimensional scaling (NMDS) portrayed that fish community structures were related to major habitat parameters, i.e., epifaunal substrate/available cover, embeddedness, velocity/depth regime, sediment deposition, channel alternation and frequency of riffles. These results suggested that fish community structures were primary affected by the longitudinal environmental changes, and those were modified by habitat disturbance in the Gapyeong Stream, a gravel-bed stream.

Considerations and Alternative Approaches to the Estimation of Local Abundance of Legally Protected Species, the Fiddler Crab, Austruca lactea (법정보호종, 흰발농게(Austruca lactea) 서식 개체수 추정에 대한 검토와 대안)

  • Yoo, Jae-Won;Kim, Chang-Soo;Park, Mi-Ra;Jeong, Su-Young;Lee, Chae-Lin;Kim, Sungtae;Ahn, Dong-Sik;Lee, Chang-Gun;Han, Donguk;Back, Yonghae;Park, Young Cheol
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.122-132
    • /
    • 2021
  • We reviewed the methods employed in Korean tidal flat surveys to measure the local abundance of the endangered wildlife and marine protected species, the fiddler crab, Austruca lactea. A complete census for infinite population is impossible even in a limited habitat within a tidal flat, and density estimates from samples strongly vary due to diverse biological and ecological factors. The habitat boundaries and areas shift with periodicities or rhythmic activities of organisms as well as measurement errors. Hence the local abundance calculated from density and habitat areas should be regarded as transient. This conjecture was valid based on the spatio-temporal variations of the density averages, standard error ranges, and spatial distribution of the crab, A. lactea observed for 3 years (2015-2017) in Songdo tidal flat in Incheon. We proposed the potential habitat areas using the occurrence probability of 50% from logistic regression model, reflecting the importance of habitat conservation value as an alternative to local abundance. The spatial shape of potential habitat predicted from a generalized model would remain constant over time unless the species' critical environmental conditions change rapidly. The species-specific model is expected to be used for the introduction of desired species in future habitat restoration/creation projects.

Physical Habitat Assessment of Pale Chub (Zacco platypus) to Stream Orders in the Geum River Basin (하천차수에 따른 금강수계 피라미(Zacco platypus)의 물리적 서식지 평가)

  • Hur, Jun-Wook;Park, Sang-Young;Kang, Shin-Uk;Kim, Jeong-Kon
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.397-405
    • /
    • 2009
  • We assessed the physical habitat conditions of pale chub (Zacco platypus) considering various stream order in the Geum river basin. Field monitoring was conducted for ecological and habitat conditions for 28 sites from October 2007 to October 2008. The number of Z. platypus sampled during this period was 2,362. In more than 3rd stream, water depth and velocity showing the highest number of samples were 0.8 m and $0.8\;m\;s^{-1}$, respectively. In addition, the highest number of samples was observed under the condition of total length (TL) (8~10 cm), velocity ($0.3\;m\;s^{-1}$), water depth (0.4 m), substrate size (send, 0.1~1.0 mm~coarse gravel, 50.0~100.0 mm) and habitat type (run). Based on the monitoring data (n=1059) the relationship between body weight (BW) and TL in male and female were estimated as $BW=0.0068{\times}TL^{3.0274}$ ($r^2=0.9102$) and $BW=0.0075{\times}TL^{2.9995}$ ($r^2=0.8517$), respectively. Growth equations on days after parturition (DAP) to the TL were estimated as TL=0.0108DAP+1.5795 ($r^2=0.9721$). By equations (TL 6.9 cm), BW were 2.7 g (male) and 2.4 g (female), and DAP was about 490 days.

Fish Community and Estimation of Optimal Ecological Flowrate in Up and Downstream of Hoengseong Dam (횡성댐 상·하류의 어류군집 구조와 최적 생태유량 산정)

  • Hur, Jun-Wook;Kang, Hyoeng-Sik;Jang, Min-Ho;Lee, Jeong-Yeol
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.925-935
    • /
    • 2013
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in up and downstream of Hoengseong Dam. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, bio-diversity (dominance index, diversity, evenness and richness), index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) were assessed, and optimal ecological flowrates (OEF) were estimated using the habitat suitability indexes (HSI) established for three fish species Coreoleuciscus splendidus, Pungtungia herzi and Microphysogobio longidorsalis selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two species of Zacco platypus (30.4%) and C. splendidus (20.9%) dominated the fish community. As a result, it was revealed that IBI and QHEI values decreased from upstream to downstream along the river. The estimated IBI value ranged from 24 to 36 with average being 30.9 out of 50, rendering the site ecologically fair to good health conditions. HSI for C. splendidus were determined according to three different month in terms of season: Spring (April), Summer (August) and Autumn (October). HSI for flow velocity were estimated at 0.7 to 0.8 m/s for the Spring, 0.5 to 1.0 m/s for the Summer and 0.8 to 0.9 m/s for the Autumn. HSI for water depth were estimated at 0.3 to 0.5 m for the Spring; 0.3 to 0.5 m for the Summer; and 0.3 to 0.4 m for the Autumn. OEF was estimated at 4.2 and $6.5m^3/s$ for the Spring and Autumn, and $12.0m^3/s$ for the Summer. Overall, it was concluded that the Hoengseong Dam has been relatively well protected from the anthropogenic disturbance for the legally protected species including the endemic species studied in this study.

Potential Impact of Climate Change on Distribution of Hedera rhombea in the Korean Peninsula (기후변화에 따른 송악의 잠재서식지 분포 변화 예측)

  • Park, Seon Uk;Koo, Kyung Ah;Seo, Changwan;Kong, Woo-Seok
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.325-334
    • /
    • 2016
  • We projected the distribution of Hedera rhombea, an evergreen broad-leaved climbing plant, under current climate conditions and predicted its future distributions under global warming. Inaddition, weexplained model uncertainty by employing 9 single Species Distribution model (SDM)s to model the distribution of Hedera rhombea. 9 single SDMs were constructed with 736 presence/absence data and 3 temperature and 3 precipitation data. Uncertainty of each SDM was assessed with TSS (Ture Skill Statistics) and AUC (the Area under the curve) value of ROC (receiver operating characteristic) analyses. To reduce model uncertainty, we combined 9 single SDMs weighted by TSS and resulted in an ensemble forecast, a TSS weighted ensemble. We predicted future distributions of Hedera rhombea under future climate conditions for the period of 2050 (2040~2060), which were estimated with HadGEM2-AO. RF (Random Forest), GBM (Generalized Boosted Model) and TSS weighted ensemble model showed higher prediction accuracies (AUC > 0.95, TSS > 0.80) than other SDMs. Based on the projections of TSS weighted ensemble, potential habitats under current climate conditions showed a discrepancy with actual habitats, especially in the northern distribution limit. The observed northern boundary of Hedera rhombea is Ulsan in the eastern Korean Peninsula, but the projected limit was eastern coast of Gangwon province. Geomorphological conditions and the dispersal limitations mediated by birds, the lack of bird habitats at eastern coast of Gangwon Province, account for such discrepancy. In general, potential habitats of Hedera rhombea expanded under future climate conditions, but the extent of expansions depend on RCP scenarios. Potential Habitat of Hedera rhombea expanded into Jeolla-inland area under RCP 4.5, and into Chungnam and Wonsan under RCP 8.5. Our results would be fundamental information for understanding the potential effects of climate change on the distribution of Hedera rhombea.

The Distribution of Chironomids by Flow Mechanisms - Artificial Channel Measurement - (흐름 메카니즘에 의한 깔따구들의 분포(I) - 인공수로 실험 -)

  • Lee, Sang-Ho;Lee, Jung-Min;Park, Jae-Hyun;Song, Mi-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.150-158
    • /
    • 2006
  • Over the past few years, many studies have been conducted on the flow, sediment movement, pollution transportation and scour etc. However, very few attempts have been made at the hydraulic studies reflecting upon the ecological function. The objective of this study is to examine the structures of the flow and turbulence in an open circular channel and their relationship to distribution of the organisms and chironomids. Under different flow conditions, the organic matter and some chironomids were injected into the channel. Using the obtained velocity data, the flow mechanisms and the turbulent shear stresses were analyzed. Organic matters and chironomids were distributed on the region that the velocity was slower and the turbulent shear stresses were smaller. Some habitat moved even though chironomids were inhabited. This phenomenon has relationship with the flow mechanism. Some chironomids have distributed around the habitat structure of a hemisphere. The secondary flow has affected the deposition of the organic matters and the distribution of chironomids.

Development of the Estimating Equation for Children's High-Exposure to Habitat's Magnetic Field using Particle Swarm Optimization (Particle Swarm Optimization을 이용한 소아고노출 생활자계 추정식 개발)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1085-1092
    • /
    • 2010
  • This paper describes the development of estimating equation for under 16 aged children's exposure to habitat's magnetic field for 24 hours by using particle swarm optimization(PSO) algorithm, which was carried out by using the measured database collected from the exposure survey to Korean habitat's magnetic field as to under 16 aged Korean students such as preschooler, children in elementary school, and children in middle school. Sex, age, residence type, size of habitation site, distance from power line, and power transmission voltage are used as the input data of estimating 24 hour's personal exposure to magnetic field. And distribution of 24 hour's personal exposure to magnetic field, exposure characteristic to magnetic field, and exposure characteristic to magnetic field according to special conditions, are analyzed for under 16 aged children.

A Study on the Hydrostatic Mooring Stability of Submerged Floating Ellipsoidal Habitats

  • Pak, Sang-Wook;Lee, Han-Seok;Park, Jin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.328-334
    • /
    • 2019
  • Underwater architecture in providing a comfortable living space underwater is mandated to survive prevailing environmental loads, especially hydrostatic ambient water pressure exerted on the structure of individual habitat hulls at depth and hydrodynamic fluctuation of external forces that perturb the postural equilibrium and mooring stability of the underwater housing system, for which the design including the hull shape and mooring system constraint the responses. In this study, the postural stability of a proposed underwater floating housing system with three vertically connected ellipsoidal-shape habitat hulls of different sizes are theorized and calculated for hydrostatic stability, using MATLAB in the volumetric integration of a hull and the weight of operational loads under assumed scenarios. The assumptions made in the numerical method to estimate the stability of the habitat system include the fixed weight of the hulls, and their adjustable loads within operational limits for the set meteorological oceanic conditions. The purpose of this study was to numerically manipulate a) The buoyancy and b) The adjusted center of mass of the system within the range of designed external and internal load changes, by which the effective mooring system capability and postural equilibrium requirements were argued with the quantitative analysis.

Tall Buildings as Urban Habitats: A Quantitative Approach for Measuring Positive Social Impacts of Tall Buildings' Lower Public Space

  • Zhou, Xihui;Ye, Yu;Wang, Zhendong
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.57-69
    • /
    • 2019
  • After decades of high-speed development, designing tall buildings as critical components of urban habitat, rather than simply standing aloof from their environments, has become an important concern in many Asian cities. Nevertheless, the lack of quantitative understanding cannot support efficient architectural design or urban renewal that targets better place-making. This study attempts to fill the gap by providing a typological approach for measuring the social impact of tall buildings' ground conditions: that is, public space, podiums, and interfaces. The central business districts (CBD) of three Asian cities, Shanghai, Hong Kong, and Singapore, were selected as cases. Typical patterns and categories of lower-level public spaces among the three CBDs were abstracted via typological analyses and field study. The following evaluation is achieved through the analytic hierarchy process (AHP). This quantified approach helps to provide a visualization of high or low positive social impacts of tall buildings' lower-level public spaces among the three cases. This study also helps to suggest a design code for tall buildings aimed at a more human-oriented urban habitat.

Assessing the Carrying Capacity of Wild Boars in the Bukhansan National Park using MaxEnt and HexSim Models

  • Tae Geun Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.3
    • /
    • pp.115-126
    • /
    • 2023
  • Understanding the carrying capacity of a habitat is crucial for effectively managing populations of wild boars (Sus scrofa), which are designated as harmful wild animal species in national parks. Carrying capacity refers to the maximum population size supported by a park's environmental conditions. This study aimed to estimate the appropriate wild boar population size by integrating population characteristics and habitat suitability for wild boars in the Bukhansan National Park using the HexSim program. Population characteristics included age, survival, reproduction, and movement. Habitat suitability, which reflects prospecting and resource acquisition, was determined using the Maximum Entropy model. This study found that the optimal population size for wild boar ranged from 217 to 254 individuals. The population size varied depending on the amount of resources available within the home range, indicating fewer individuals in a larger home range. The estimated wild boar population size was 217 individuals for the minimum amount of resources (50% minimum convex polygon [MCP] home range), 225 individuals for the average amount of resources (95% MCP home range), and 254 individuals for the maximum amount of resources (100% MCP home range). The results of one-way analysis of variance revealed a significant difference in wild boar population size based on the amount of resources within the home range. These findings provide a basis for the development and implementation of effective management strategies for wild boar populations.