• Title/Summary/Keyword: Haar-Like feature

Search Result 105, Processing Time 0.028 seconds

Development of Reduction Algorithm for Face Detection Error Using MCT and Neural Network (MCT와 신경망을 이용한 얼굴 오검출 감소 알고리즘 개발)

  • Ra, Seung-Tak;Lee, Seung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.700-703
    • /
    • 2016
  • OpenCV(Open Computer Vision)에서 제공하는 얼굴 검출 알고리즘은 Haar-like feature와 Cascade 방식을 이용하여 얼굴의 패턴을 찾아내 얼굴을 검출한다. 그러나 우연히 얼굴이 아닌 곳이 얼굴과 유사한 패턴일 경우, 얼굴로 인식하는 오류를 범하게 된다. 따라서 본 논문은 MCT(Modified Census Transform)와 신경망을 이용하여 잘못된 얼굴 검출 영역을 감소시키는 알고리즘을 제안한다. MCT는 다양한 조명 조건에서도 강인한 얼굴 영상의 지역적 구조 특징을 추출하기 위하여 사용되고, 신경망 알고리즘은 Haar-Cascade 알고리즘의 얼굴 검출 방법으로 검출된 영역이 실제로 얼굴인지 아닌지를 판단하기 위하여 사용된다. 실험에서 사용된 6개의 데이터들은 인터넷에서 수집한 것으로서, Haar-Cascade 알고리즘의 얼굴 검출 방법으로 얼굴을 검출하였을 때 오검출된 영역이 1개 이상 존재한다. 본 논문에서 제안한 알고리즘으로 실험한 결과, Haar-Cascade 알고리즘의 얼굴 검출 방법에 비하여 오검출된 영역이 감소된 것을 확인할 수 있었다.

Efficient Facial Blemishes Removal with Face Feature Detection (얼굴 구성요소 검출을 통한 효율적인 얼굴 잡티 제거)

  • Park, Ho-Jun;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.55-58
    • /
    • 2016
  • 본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.

  • PDF

Face Recognition System for Unattended reception interface (무인 접수 인터페이스를 위한 얼굴인식 시스템)

  • Park, Se-Hyun;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • As personal information is utilized as an important user authentication means, a trustable certification means is being required. Recently, a research on the biometrics system using a part of the human body like a password is being attempted a lot. The face recognition technology using characteristics of the personal face among several biometrics technologies is easy in extracting features. In this paper, we implement a face recognition system for unattended reception interface. Our method is performed by two steps. Firstly the face is extracted using Haar-like feature method. Secondly the method combining PCA and LDA for face recognition was used. To assess the effectiveness of the proposed system, it was tested and experimental results show that the proposed method is applicable for unattended reception interface.

Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features (영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템)

  • Lee, Min-taek;Lee, Kyu-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.826-832
    • /
    • 2016
  • In this paper, we propose a tongue diagnosis system for determining the presence of specific taste crack area as a first step in the digital tongue diagnosis system that anyone can use easily without special equipment and expensive digital tongue diagnosis equipment. Training DB was developed by the Haar-like feature, Adaboost learning on the basis of 261 pictures which was collected in Oriental medicine. Tongue candidate regions were detected from the input image by the learning results and calculated the average value of the HUE component to separate only the tongue area in the detected candidate regions. A tongue area is separated through the Connected Component Labeling from the contour of tongue detected. The palate regions were divided by the relative width and height of the tongue regions separated. Image on the taste area is converted to gray image and binarized with each of the average brightness values. A crack in the presence or absence was determined via Connected Component Labeling with binary images.

A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation (실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법)

  • Kim, Woonggi;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper, we present a new method which efficiently estimates a face direction from a sequences of input video images in real time fashion. For this work, the proposed method performs detecting the facial region and major facial features such as both eyes, nose and mouth by using the Haar-like feature, which is relatively not sensitive against light variation, from the detected facial area. Then, it becomes able to track the feature points from every frame using optical flow in real time fashion, and determine the direction of the face based on the feature points tracked. Further, in order to prevent the erroneously recognizing the false positions of the facial features when if the coordinates of the features are lost during the tracking by using optical flow, the proposed method determines the validity of locations of the facial features using the template matching of detected facial features in real time. Depending on the correlation rate of re-considering the detection of the features by the template matching, the face direction estimation process is divided into detecting the facial features again or tracking features while determining the direction of the face. The template matching initially saves the location information of 4 facial features such as the left and right eye, the end of nose and mouse in facial feature detection phase and reevaluated these information when the similarity measure between the stored information and the traced facial information by optical flow is exceed a certain level of threshold by detecting the new facial features from the input image. The proposed approach automatically combines the phase of detecting facial features and the phase of tracking features reciprocally and enables to estimate face pose stably in a real-time fashion. From the experiment, we can prove that the proposed method efficiently estimates face direction.

Triangle Method for Fast Face Detection on the Wild

  • Malikovich, Karimov Madjit;Akhmatovich, Tashev Komil;ugli, Islomov Shahboz Zokir;Nizomovich, Mavlonov Obid
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • There are a lot of problems in the face detection area. One of them is detecting faces by facial features and reducing number of the false negatives and positions. This paper is directed to solve this problem by the proposed triangle method. Also, this paper explans cascades, Haar-like features, AdaBoost, HOG. We propose a scheme using 12-net, 24-net, 48-net to scan images and improve efficiency. Using triangle method for frontal pose, B and B1 methods for other poses in neural networks are proposed.

Performance Analysis of Viola & Jones Face Detection Algorithm (Viola & Jones 얼굴 검출 알고리즘의 성능 분석)

  • Oh, Jeong-su;Heo, Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.477-480
    • /
    • 2018
  • Viola and Jones object detection algorithm is a representative face detection algorithm. The algorithm uses Haar-like features for face expression and uses a cascade-Adaboost algorithm consisting of strong classifiers, a linear combination of weak classifiers for classification. This algorithm requires several parameter settings for its implementation and the set values affect its performance. This paper analyzes face detection performance according to the parameters set in the algorithm.

  • PDF

Implementation of Realtime Face Recognition System using Haar-Like Features and PCA in Mobile Environment (모바일 환경에서 Haar-Like Features와 PCA를 이용한 실시간 얼굴 인증 시스템)

  • Kim, Jung Chul;Heo, Bum Geun;Shin, Na Ra;Hong, Ki Cheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • Recently, large amount of information in IDS(Intrusion Detection System) can be un manageable and also be mixed with false prediction error. In this paper, we propose a data mining methodology for IDS, which contains uncertainty based on training process and post-processing analysis additionally. Our system is trained to classify the existing attack for misuse detection, to detect the new attack pattern for anomaly detection, and to define border patter between attack and normal pattern. In experimental results show that our approach improve the performance against existing attacks and new attacks, from 0.62 to 0.84 about 35%.

Vision based Traffic Light Detection and Recognition Methods for Daytime LED Traffic Light (비전 기반 주간 LED 교통 신호등 인식 및 신호등 패턴 판단에 관한 연구)

  • Kim, Hyun-Koo;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • This paper presents an effective vision based method for LED traffic light detection at the daytime. First, the proposed method calculates horizontal coordinates to set region of interest (ROI) on input sequence images. Second, the proposed uses color segmentation method to extract region of green and red traffic light. Next, to classify traffic light and another noise, shape filter and haar-like feature value are used. Finally, temporal delay filter with weight is applied to remove blinking effect of LED traffic light, and state and weight of traffic light detection are used to classify types of traffic light. For simulations, the proposed method is implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM, and tested on the urban and rural road video. Average detection rate of traffic light is 94.50 % and average recognition rate of traffic type is 90.24 %. Average computing time of the proposed method is 11 ms.

Implementation of Drowsiness Driving Warning System based on Improved Eyes Detection and Pupil Tracking Using Facial Feature Information (얼굴 특징 정보를 이용한 향상된 눈동자 추적을 통한 졸음운전 경보 시스템 구현)

  • Jeong, Do Yeong;Hong, KiCheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • In this paper, a system that detects driver's drowsiness has been implemented based on the automatic extraction and the tracking of pupils. The research also focuses on the compensation of illumination and reduction of background noises that naturally exist in the driving condition. The system, that is based on the principle of Haar-like feature, automatically collects data from areas of driver's face and eyes among the complex background. Then, it makes decision of driver's drowsiness by using recognition of characteristics of pupils area, detection of pupils, and their movements. The implemented system has been evaluated and verified the practical uses for the prevention of driver's drowsiness.