• 제목/요약/키워드: Haar-Feature

검색결과 143건 처리시간 0.024초

A Study of Facial Organs Classification System Based on Fusion of CNN Features and Haar-CNN Features

  • Hao, Biao;Lim, Hye-Youn;Kang, Dae-Seong
    • 한국정보기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.105-113
    • /
    • 2018
  • 본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.

실시간 객체 검출을 위한 개선된 Haar-like Feature 정규화 방법 (An Improved Normalization Method for Haar-like Features for Real-time Object Detection)

  • 박기영;황선영
    • 한국통신학회논문지
    • /
    • 제36권8C호
    • /
    • pp.505-515
    • /
    • 2011
  • 본 논문에서는 객체 검출에 사용되는 Haar-like feature의 정규화 방법에 대해 다룬다. 기존의 Haar-like feature의 분산 정규화는 후보 윈도우 픽셀들에 대한 표준편차 계산에 사용되는 별도의 적분 영상 생성을 위해 많은 연산을 필요로 했으며 밝기 변화가 작은 영역에서 오검출이 증가하는 문제를 가지고 있으나, 제안하는 정규화 방법은 별도의 적분 영상을 사용하지 않아 처리 속도가 빠르며 제안하는 방법을 사용하여 학습시킨 분류기는 밝기 변화에 대해 강건한 성능을 보인다. 실험 결과 제안한 방법을 사용했을 때 객체 검출기의 처리 속도는 26% 향상 되었으며, 제안한 방법을 사용하여 학습시킨 분류기들은 5% 이상 향상된 검출률을 보였으며, 밝기 변화가 심한 경우는 45% 향상된 검출률을 보였다.

피부색과 Haar-like feature를 이용한 실시간 얼굴검출 (Real-Time face detection using the Skin color and Haar-like feature)

  • 정중교;박상성;장동식
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.113-121
    • /
    • 2005
  • 실시간 영상에서 사람의 얼굴을 검출하는 것은 얼굴 인식 분야에 있어서 주요한 관심 분야 중의 하나이다. 본 본문에서는 실시간 입력되는 영상에서 피부색과 Haar-like feature를 이용한 얼굴 검출 알고리즘을 제안하였다. 제안된 알고리즘은 YCbCr 색 공간에서의 차 연산 기법을 이용하여 이동 물체의 움직임 영역을 ROI(region of interest)로 선정하고 Haar-like feature를 이용하여 얼굴 후보영역을 선정한 다음 피부색 정보를 이용하여 얼굴을 검출하였다. 특히, 가변적으로 선정되는 ROI 영역에 대하여 피부색 정보와 특징 정보를 이용함으로서 실시간 영상에 대하여 처리 속도의 향상과 비슷한 특징 또는 색상을 가진 영상이 얼굴로 검출되는 오류를 방지하였다. 실험 결과는 기존의 연구에 비해 30%의 처리 속도 향상과 96.8%의 검출 성공률을 보였다.

  • PDF

Haar-like와 베지어 곡선을 이용한 얼굴 성분 검출 (Facial Detection using Haar-like Feature and Bezier Curve)

  • 안경준;이상용
    • 디지털융복합연구
    • /
    • 제11권9호
    • /
    • pp.311-318
    • /
    • 2013
  • 얼굴 검출 기법들의 경우 조명과 배경에 따라 검출의 정확도가 떨어지는 현상이 발생하여, 이를 해결하기 위한 기법들이 요구되고 있다. 본 연구에서는 얼굴의 눈과 입의 성분을 분석하여 인간의 감성 정보를 추출하기 위한 데이터를 획득하고자 한다. 이를 위해 처리속도가 빠르고 환경 요소들에 강인한 검출율을 보이는 얼굴 특징 검출 방법을 제안하였다. 본 방법은 적분 이미지를 적용한 Haar-like Feature기법을 이용하여 얼굴 성분(두 눈, 입)을 검출한 후, 색상 정보를 바탕으로 검출된 성분들을 이진화하고 피부영역과 얼굴 성분영역을 구분한다. 그 후, 빠르고 정확한 shape를 생성하기 위해 베지어 곡선을 이용하여 검출된 성분들의 shape를 생성한다. 제안된 방법의 성능을 평가하기 위하여 Face Recognition Homepage의 데이터를 이용하여 실험을 진행하였으며, 이를 통해 정교한 얼굴 성분 검출이 가능함을 확인하였다.

Haar-like 특징과 템플릿을 이용한 귀 검출 (Ear Detection using Haar-like Feature and Template)

  • 한상일;차형태
    • 방송공학회논문지
    • /
    • 제13권6호
    • /
    • pp.875-882
    • /
    • 2008
  • 영상으로부터 사람의 귀를 검출하는 것은 생체 인식 분야에 있어서 매우 중요한 분야이다. 따라서 본 논문에서는 측면 얼굴 영상으로부터 귀를 검출하는 알고리즘을 제안한다. 제안하는 알고리즘은 먼저 피부색을 이용하여 얼굴 영역을 검출하고 검출된 얼굴 영역으로부터 Haar-like 특징을 이용하여 귀를 검출한다. 그리고 검출된 귀를 검증하기 위해 표준 템플릿을 이용하여 검출된 귀를 검증한다. 실험 결과 본 논문에서 제안된 방법은 기존의 연구에 비해 60%의 처리 속도 향상과 92%의 검출 성공률을 보였다.

새로운 Free Rectangle 특징을 사용한 Adaboost 기반 얼굴검출 방법 (A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature)

  • 홍용희;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.55-64
    • /
    • 2010
  • 본 논문은 수행시간이 빠르면서 효율성이 높은 새로운 Free Rectangle 특징을 사용한 Adaboost 알고리즘 기반 얼굴 검출 방법을 제안한다. 제안하는 Free Rectangle 특징은 동일한 면적의 분리가 가능한 두 개의 사각형으로 구성된 마스크로부터 정의된다. Haar-like 특징은 다양성을 높이기 위해 일반적으로 두 개 이상의 사각 영역으로 구성한 복잡한 마스크 구조를 갖는다. 하지만, 제안하는 특징 마스크는 두 사각형이 특징 윈도우 안에 놓이는 위치와 크기에 따라 효율성이 좋은 다양한 특징을 얻을 수 있다. 또한 제안하는 특징은 일반 Haar-like 특징과 달리 마스크 형태에 상관없이 두 사각 영역의 화소 합의 차만 계산함으로 수행 시간을 크게 줄일 수 있다. 실세계 영상에서 제안하는 Adaboost 알고리즘 기반 얼굴 검출 기법은 빠른 검출 속도와 높은 검출 결과를 보여 학습 데이터만을 바꿔 다른 물체 검출에도 쉽게 적용이 가능하다.

시선 응시 점 기반의 관심영역 확장을 통한 원 거리 얼굴 검출 (Far Distance Face Detection from The Interest Areas Expansion based on User Eye-tracking Information)

  • 박희선;홍장표;김상열;장영민;김철수;이민호
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.113-127
    • /
    • 2012
  • 영상처리 기법을 이용한 얼굴검출에 관한 많은 다양한 방법들이 제시되어 왔다. 일반적으로 가장 많이 쓰이는 얼굴 검출 방식은 Viola와 Jones이 제안한 Adaboost 방식이다. 이 방식은 Haar-like feature을 이용하여 얼굴영상을 선행 학습하고, 검출 성능은 학습된 DB에 의존한다. 이는 일정 거리 범위 안의 학습된 얼굴 크기에서는 얼굴 검출을 잘 수행하지만, 카메라에서 객체(얼굴)의 거리가 멀어지면 얼굴 크기가 작아져 기존에 학습한 Haar-like feature로 얼굴 검출을 하지 못하는 경우가 발생한다. 이에 본 논문에서는 생물학 기반의 선택적 주의집중 기반의 Haar-like feature 정보를 이용한 Adaboost 모델과 사용자의 시선 응시 점 정보를 이용하여, 사용자의 관심영역 확장을 통한 원거리 얼굴 검출 모델을 제안한다. 생물학적 기반의 선택적 주의 집중 모델인 돌출맵(Saliency map) 정보를 이용하여 입력 영상에 대하여 얼굴 후보 영역을 검출하고, 검출된 얼굴 후보 영역 중에서 선행 학습된 Haar-like feature 정보로 Adaboost 알고리즘을 이용하여 최종 얼굴 영상을 검출한다. 그리고 사용자의 시선 응시 점 정보는 관심영역을 선택 하는데 이용된다. 피 실험자가, 카메라로부터 멀리 거리 떨어져 얼굴의 크기가 얼굴검출이 힘들더라도 사용자 시선 응시 점 영역을 선형 보간법으로 확대하여 입력영상으로 재사용함으로써 얼굴 검출 성능을 높일 수 있다. 제안된 방법이 기존의 Adaboost 방법보다 얼굴 검출 성능과 수행시간 면에서 우수함을 실험을 통해 확인하였다.

명암 가중치를 이용한 반복 수렴 공간 모멘트기반 눈동자의 시선 추적 (Tracking of eyes based on the iterated spatial moment using weighted gray level)

  • 최우성;이규원
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1240-1250
    • /
    • 2010
  • 본 논문에서는 명암 가중치를 적용한 반복 공간 모멘트를 이용하여 복잡한 배경에서 사용자의 눈을 정확히 추출하고 추적할 수 있는 눈 추적 시스템을 제안한다. CCD 카메라를 활용하여 촬영한 입력영상으로부터 눈 영역을 찾기 전에 관심영역을 최소화하기 위하여 Haar-like feature를 이용하여 얼굴영역을 검출한다. 그리고 주성분 분석의 고유 얼굴 기반인 고유 눈을 이용하여 눈 영역을 검출 한다. 또한 눈 영역에서 가장 어두운 부분으로부터 눈의 좌 우 상 하 끝점인 특징 점을 찾고, 명암 가중치를 적용한 반복 수렴 공간 모멘트를 이용하여 정확한 눈동자의 시선추적을 확인하였다.

HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식 (Real-time Hand Pose Recognition Using HLF)

  • 김장운;김송국;홍석주;장한별;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

영상분할 및 Haar-like 특징 기반 자동차 검출 (Vehicle Detection based on the Haar-like feature and Image Segmentation)

  • 최미순;이정환;석정희;노태문;심재창
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1314-1321
    • /
    • 2010
  • 본 논문에서는 도로에서 주행 중인 차량검출 알고리즘에 대하여 연구한다. 카메라에서 입력된 영상으로부터 차량을 검출하기위해 먼저 분할 및 합병(split & merge)방법을 적용하여 영상을 분할하고 그 다음 분할된 영역을 해석하여 차량이 위치할 가능성이 높은 영역을 집중적으로 탐색하여 차량을 실시간으로 검출하는 알고리즘을 연구한다. 전방차량의 후면을 검출하기 위하여 수직/수평 성분을 특정으로 하였으며 적분영상을 이용하여 계산시간을 줄일 수 있는 Haar-like방법을 적용하였으며 분류기로는 SVM을 사용하였다. 제안된 방법의 성능을 평가하기 위해 350개의 영상을 사용하여 분류기를 학습하였으며 또한 학습에 사용하지 않은 비학습영상 150개를 사용하여 인식률을 구하였다. 실험결과 비학습영상에 대해 95.00%의 인식률을 얻었다.