• 제목/요약/키워드: Haar-Feature

검색결과 143건 처리시간 0.027초

비간축 웨이브릿 변환과 레티넥스 기법을 이용한 HDR 업스케일링 알고리즘 (A HDR Up-scaling Algorithm Using Undecimated Wavelet Transform and Retinex Method)

  • 한규필
    • 한국멀티미디어학회논문지
    • /
    • 제25권10호
    • /
    • pp.1395-1403
    • /
    • 2022
  • Lately, over 4K high definition and high dynamic range (HDR) display devices are popularized, various interpolation and HDR methods have been researched to expand the size and the dynamic range. Since most of the legacy low resolution (LR) images require both an interpolation and a HDR tone mapping methods, the two processes should be subsequently applied. Therefore, the proposed algorithm presents a HDR up-scaling algorithm using undecimated wavelet transform and Retinex method, which transfers a LR image of low dynamic range (LDR) into the high resolution (HR) with HDR. The proposed algorithm consists of an up-scaling scheme increasing the image size and a tone mapping scheme expanding the dynamic range. The up-scaling scheme uses the undecimated version of the simplest Haar wavelet analysis for the 8-directional interpolation and the change region is extracted during the analysis. This region information is utilized in controlling the surround functions' size of the proposed tone mapping using MSRCR, to enhance the pixels of around the edges that are dominant feature of the subjective image quality. As the results, the proposed algorithm can apply an up-scaling and tone mapping processes in accordance with the type of pixel.

깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법 (A Fast and Accurate Face Detection and Tracking Method by using Depth Information)

  • 배윤진;최현준;서영호;김동욱
    • 한국통신학회논문지
    • /
    • 제37권7A호
    • /
    • pp.586-599
    • /
    • 2012
  • 본 논문에서는 RGB영상과 깊이영상을 사용하여 얼굴검출 및 추적을 고속으로 수행할 수 있는 방법을 제안한다. 이 방법은 얼굴검출 과정과 얼굴추적 과정으로 구성되며, 얼굴검출 과정은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이영상을 사용하여 탐색영역을 축소한다. 얼굴추적은 템플릿 매칭방법을 사용하며, 조기종료 기법을 사용하여 수행시간을 줄였다. 이 방법들을 구현하여 실험한 결과, 얼굴검출 방법은 기존의 방법에 비해 약 39%의 수행시간을 보였으며, 얼굴추적 방법은 $640{\times}480$ 해상도의 프레임 당 2.48ms의 추적시간을 보였다. 또한 검출율에 있어서도 제안한 얼굴검출 방법은 기존의 방법에 비해 약간 낮은 검출률을 보였으나, 얼굴로 인식하였지만 실제로는 얼굴이 아닌 경우의 오검출률에 있어서는 기존방법의 약 38% 향상된 성능을 보였다. 또한 얼굴추적 방법은 추적시간과 추적 정확도에 있어서 상보적인 관계를 가지며, 특별한 경우를 제외한 모든 경우에서 약 1%의 낮은 추적오차율을 보였다. 따라서 제안한 얼굴검출 및 추적방법은 각각 또는 결합하여 고속 동작과 높은 정확도를 필요로 하는 응용분야에 사용될 수 있을 것으로 기대된다.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템 (Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm)

  • 진문용;박종빈;이동석;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.361-368
    • /
    • 2014
  • 차량 번호판 인식 시스템은 복잡한 교통환경의 효율적 관리를 위해 발전되어 현재 많은 곳에 사용되고 있다. 그러나 조명, 잡음, 배경변화, 번호판 훼손 등 환경변화에 큰 영향을 받기 때문에 제한된 환경에서만 동작하며, 실시간으로 사용하기 어렵다. 본 논문에서는 조명변화와 잡음에 강건하며 빠른 번호판 인식을 위한 휴리스틱 분할 알고리즘 및 이를 이용한 실시간 번호판 인식 시스템을 제안한다. 첫 번째 단계는 Haar-like 특징과 Adaboost를 이용하여 번호판을 검출한다. 이 방법은 적분영상을 이용하며 케스케이드 구조로 구성되어 있어 빠른 검출이 가능하다. 두 번째 단계에서 적응 히스토그램 평활화 방법과 노이즈를 경감시키는 바이레터럴 필터를 이용하여 번호판의 종류를 결정한 후, 번호판 종류에 따라 적분영상을 이용한 적응 이진화, 픽셀 프로젝션, 사전지식 등을 기반으로 빠르고 정확한 문자 분할을 한다. 세번째 단계에서는 HOG와 신경망 알고리즘을 이용하여 숫자를 인식하고, SVM을 이용해 한글을 인식한다. 실험결과는 번호판검출에 94.29%의 검출률, 2.94%의 오경보율을 보이며, 문자분할에서는 검출률 97.23%, 2.94%의 오경보율을 보였다. 문자인식에서 평균 인식률은 98.38%이다. 평균 운용시간은 140ms으로 빠르고 강인한 실시간 시스템을 만들 수 있다.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

GPU를 이용한 야간 보행자 검출과 추적 시스템 구현 (Implementation of Pedestrian Detection and Tracking with GPU at Night-time)

  • 최범준;윤병우;송종관;박장식
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.421-429
    • /
    • 2015
  • 이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.

EAR: Enhanced Augmented Reality System for Sports Entertainment Applications

  • Mahmood, Zahid;Ali, Tauseef;Muhammad, Nazeer;Bibi, Nargis;Shahzad, Imran;Azmat, Shoaib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6069-6091
    • /
    • 2017
  • Augmented Reality (AR) overlays virtual information on real world data, such as displaying useful information on videos/images of a scene. This paper presents an Enhanced AR (EAR) system that displays useful statistical players' information on captured images of a sports game. We focus on the situation where the input image is degraded by strong sunlight. Proposed EAR system consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player and face detection, face recognition, and players' statistics display. First, an algorithm based on multi-scale retinex is proposed for image enhancement. Then, to detect players' and faces', we use adaptive boosting and Haar features for feature extraction and classification. The player face recognition algorithm uses boosted linear discriminant analysis to select features and nearest neighbor classifier for classification. The system can be adjusted to work in different types of sports where the input is an image and the desired output is display of information nearby the recognized players. Simulations are carried out on 2096 different images that contain players in diverse conditions. Proposed EAR system demonstrates the great potential of computer vision based approaches to develop AR applications.

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

에이다부스트와 신경망 조합을 이용한 표정인식 (Facial Expression Recognition by Combining Adaboost and Neural Network Algorithms)

  • 홍용희;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.806-813
    • /
    • 2010
  • 표정은 사람의 감정을 표현하는 대표적인 수단이다. 이러한 이유로 표정은 사람의 의도를 컴퓨터에 전하는데 효과적인 방법으로 사용될 수 있다. 본 논문에서는 2D 영상에서 사람의 표정을 보다 빠르고 정확하게 인식하기 위해 Discrete Adaboost 알고리즘과 신경망 알고리즘을 통합하는 방법을 제안한다. 1차로 Adaboost 알고리즘으로 영상에서 얼굴의 위치와 크기를 찾고, 2차로 표정별로 학습된 Adaboost 강분류기를 이용하여 표정별 출력 값을 얻으며, 이를 마지막으로 Adaboost 강분류기 값으로 학습된 신경망 알고리즘의 입력으로 이용하여 최종 표정을 인식한다. 제안하는 방법은 실시간이 보장된 Adaboost 알고리즘의 특성과 정확성을 개선하는 신경망 기반 인식기의 신뢰성을 적절히 활용함으로서 전체 인식기의 실시간성을 확보하면서도 정확성을 향상시킨다. 본 논문에서 구현된 알고리즘은 평온, 행복, 슬픔, 화남, 놀람의 5가지 표정에 대해 평균 86~95%의 정확도로 실시간 인식이 가능하다.

모핑을 이용한 눈 영역 크기 보정 기법 (The Size Correction Method of Eyes Region using Morphing)

  • 구은진;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.83-86
    • /
    • 2013
  • 본 논문은 모핑을 이용하여 양 쪽 눈 크기가 같지 않을 경우 눈 영역 크기를 보정하는 기법을 제안한다. 먼저, 입력받은 영상에서 haarcascade를 이용하여 얼굴과 눈을 검출한다. 검출된 눈 모양 중 한 쪽 눈 영역은 좌우를 반전시킨 후, 이전 단계에서 검출된 눈 모양을 캐니 엣지를 사용하여 눈매를 뽑아내고 제어선으로 이용하여 두 눈 사이의 대응관계를 설정한다. 그 후, 각각의 눈 영역을 이전 단계에서 설정한 대응관계에 맞추어 워핑을 한다. 그 후, 두 영상을 합병한다. 합변한 결과 영상을 두 눈 중 크기가 작은 눈에 적용한다. 이 결과 정면으로 바라보는 얼굴 영상을 테스트 영상으로 실험한 결과 제안된 시스템은 단순히 눈의 크기만 맞추는 방법보다 더 효율적이라는 것을 증명한다.

  • PDF