본 논문에서는 Hadamard 변환이 Jacket 변환으로 일반화 될 수 있는 것처럼 Haar 변환을 Jacket-Haar 변환으로 일반화 한다. Jacket-Haar 변환의 원소는 0 과 ${\pm}2^k$ 이다. original Haar 변환과 비교해서 Jacket-Haar 변환의 베이시스(basis)는 신호처리에 보다 적합하다. 응용으로 $2{\times}2$ Hadamard 행렬을 기반으로 한 DCT-II(discrete cosine transform-II)와 $2{\times}2$ Haar 행렬을 기반으로 한 HWT(Haar Wavelete transform)를 제시하고 이들의 성능을 분석하며 Lenna 이미지의 시뮬레이션을 통해 성능을 평가하였다.
본 논문은 Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로를 제안한다. 제안하는 회로는 영상의 매 프레임 마다 슬라이딩 윈도우를 적용하여 Haar-like 특징을 추출하고 보행자 및 차량을 인식한다. Haar-like 특징 추출 회로는 슬라이딩 윈도우 당 200개의 Haar-like 특징을 추출하며, 추출된 특징들은 AdaBoost 인식 회로에서 사용된다. 제안하는 회로는 속도 향상을 위해 병렬 회로 구조를 적용하였으며 두 개의 슬라이딩 윈도우가 동시에 보행자 또는 차량을 인식한다. 제안하는 고성능 보행자 및 차량 인식 회로는 Verilog HDL로 설계하였으며 130nm 표준 셀 라이브러리를 이용하여 게이트 수준의 회로로 합성하였다. 합성된 회로는 1,388,260개의 게이트로 구성되며 최대 동작 주파수는 203MHz이다. 제안하는 회로는 $640{\times}480$ 영상을 초당 약 47.8장 처리할 수 있기 때문에 보행자와 차량을 실시간으로 인식하기 위해 사용될 수 있다.
OpenCV (Open Computer Vision)에서 제공하는 얼굴 인식 알고리즘에서는 Haar 특징(Haar feature)들과 대상 영상의 정합 과정인 Haar 매칭 (Haar Matching)을 통하여 얼굴을 검출하는데, 이때 Haar 특징들은 정면 얼굴로 구성된 훈련 영상을 통해 학습된다. 따라서 OpenCV의 얼굴 검출 방법은 정면 얼굴에 대해서는 높은 얼굴 검출율을 보이지만, 정면을 응시하지 않거나 얼굴의 형태가 변형된 경우에는 얼굴을 정확하게 검출하지 못하는 경우가 빈번히 발생한다. 본 논문에서는 측면 얼굴 혹은 형태가 변형된 얼굴에서도 컬러 히스토그램의 분포 특성은 유사하다고 가정하고, 히스토그램 패턴 매칭(histogram pattern matching)을 이용한 얼굴 검출 방법을 제안한다. 제안한 방법에서는 Haar 매칭 오류가 발생한 프레임에 대하여, 정확하게 검출된 이전 프레임의 얼굴 영역에 대한 히스토그램 패턴 매칭을 통하여 가장 유사한 히스토그램 분포를 갖는 영역을 얼굴로 인식한다. 제안한 방법의 얼굴 검출 알고리즘의 성능을 평가하기 위한 모의실험에서 제안한 얼굴 검출 방법이 OpenCV보다 얼굴 검출율이 8% 정도 향상됨을 확인하였다.
본 논문은 적외선 영상에서 Haar 웨이블릿과 이동평균을 이용한 화염검출 방법을 제안한다. 제안된 방법은 Haar 웨이블릿 변환 단계, 화염 후보영역 검출단계, 화염후보영역 추적 및 화염 판단의 3단계로 구성된다. Haar 웨이블릿 변환 단계는 Haar 웨이블릿을 적용하여 입력영상 프레임을 4개의 부영상으로 분할하고, 고주파 영상을 합성하여 에너지를 계산한다. 화염 후보영역 검출단계에서는 저주파영역에서 임계값을 적용하여 높은 밝기 값을 갖는 이진영상을 구한 다음, 연결 알고리즘을 이용하여 초기 화염후보영역의 경계선을 구하고, 영역확장 방법을 이용하여 최종 화염 후보영역을 계산한다. 화염후보영역의 추적 및 화염 판단 단계에서는 화염후보영역의 크기와 고주파 성분 에너지 평균을 계산하고, 큐를 사용하여 추적하면서, 계산된 특징의 이동평균이 변동되는 영역을 화염영역으로 판단한다.
본 논문은 Haar 웨이브릿변환과 평균 박스필터에 기반을 둔 Haar 웨이브릿 특징 검출자를 제안한다. 원 영상을 Haar 웨이브릿 변환을 통해 분해하여 영상의 분산정보를 얻고 영상 식별을 위한 특징정보를 추출한다. 영역을 나타내는 주위영역들 중에 분산이 가장 큰 영역의 관심점을 검출하기 위하여 국부 분산정보를 비교하는 평균 박스필터를 적용하고 빠른 계산을 위한 적분영상 기법을 사용한다. Haar 웨이브릿 변환과 평균 박스필터를 이용하여 제안한 검출자는 밝기 변화, 스케일 변화, 영상의 회전에 민감하지 않는 특성을 제공할 수 있다. 실험결과는 제안한 방법이 적은 관심점을 사용하는 경우에도 기존의 DoG 검출자와 Harris corner 검출자에 비해 더 높은 repeatability와 효율성 그리고 매칭정확성을 달성할 수 있음을 보여준다.
In this paper Haar functions are developed to approximate the solutions of continuous time linear system. Properties of Haar functions are first presented, and an explicit expression for the inverse of the Haar operational matrix is presented. Using the inverse of the Haar operational matrix the full order Stein equation should be solved in terms of the solutions of pure algebraic matrix equations, which reduces the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.
Journal of information and communication convergence engineering
/
제2권3호
/
pp.187-192
/
2004
A method using two dimension Haar functions approximation for solving the problem of a partial differential equation and estimating the parameters of a non-linear distributed parameter system (DPS) is presented. The applications of orthogonal functions, including Haar functions, and their transforms have been given much attention in system control and communication engineering field since 1970's. The Haar functions set forms a complete set of orthogonal rectangular functions similar in several respects to the Walsh functions. The algorithm adopted in this paper is that of estimating the parameters of non-linear DPS by converting and transforming a partial differential equation into a simple algebraic equation. Two dimension Haar functions approximation method is introduced newly to represent and solve a partial differential equation. The proposed method is supported by numerical examples for demonstration the fast, convenient capabilities of the method.
In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using differential haar-like feature, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: horizontal haar-like feature and vertical haar-like feature. For the next, we calculate the proposed feature vector using differential haar-like method. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using the differential area of horizontal and vertical haar-like. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method for the pedestrian and non-pedestrian.
본 논문에서는 사람 얼굴의 눈, 코, 입을 효과적으로 분류하는 방법을 제안한다. 최근 대부분의 이미지 분류는 CNN(Convolutional Neural Network)을 이용한다. 그러나 CNN으로 추출한 특징은 충분하지 않아 분류 효과가 낮은 경우가 있다. 분류 효과를 더 높이기 위해 새로운 알고리즘을 제안한다. 제안하는 방법은 크게 세 부분으로 나눌 수 있다. 첫 번째는 Haar 특징추출 알고리즘을 사용하여 얼굴의 눈, 코, 입 데이터?을 구성한다. 두번째는 CNN 구조 중 하나인 AlexNet을 사용하여 이미지의 CNN 특징을 추출한다. 마지막으로 Haar 특징 추출 뒤에 합성(Convolution) 연산을 수행하여 Haar-CNN 특징을 추출한다. 그 후 CNN 특징과 Haar-CNN을 혼합하여 Softmax를 이용해 분류한다. 혼합한 특징을 사용한 인식률은 기존의 CNN 특징 보다 약 4% 향상되었다. 실험을 통해 제안하는 방법의 성능을 증명하였다.
실시간 영상에서 사람의 얼굴 검출은 얼굴 인식분야에 있어서 주요한 관심 분야 중의 하나이다. 본 논문에서는 실시간 입력되는 영상에서 피부 색상과 Haar-like feature를 이용한 얼굴 검출 및 추적 알고리듬을 제안한다. 제안된 알고리듬은 컬러 색 공간에서 피부색상과 특징점을 가지고 얼굴 영역 및 추적하였다. 실험 결과 실시간 영상에 대해 조명 변화 및 가림 현상에서 강건한 추적 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.