• Title/Summary/Keyword: HaCaT Keratinocytes

Search Result 250, Processing Time 0.035 seconds

Anti-Inflammatory Effect of Ixeris dentata on Ultraviolet B-Induced HaCaT Keratinocytes

  • Kim, Sung-Bae;Kang, Ok-Hwa;Keum, Joon-Ho;Mun, Su-Hyun;An, Hyun-Jin;Jung, Hyun-Ju;Hong, Seung-Heon;Jeong, Dong-Myong;Kweon, Kee-Tae;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB) irradiation induces skin damage and inflammation through the secretion of various cytokines, which are immune regulators produced by cells. To prevent the initiation of skin inflammation, keratinocytes that have been irreversibly damaged by radiation must be removed through the apoptotic mechanism. Ixeris dentata (family: Asteraceae) is a perennial medicinal herb indigenous to Korea. It has been used in Korea, China, and Japan to treat in digestion, pneumonia, diabetes, hepatitis, and tumors. To gain insight into the anti-inflammatory effects of I. dentata, we examined its influence on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells), by observing cells that were stimulated with UVB in the presence or absence of I. dentata. In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of mitogen-activated protein kinase (MAPKs). I. dentata inhibited UVBinduced production of the pro-inflammatory cytokine interleukin (IL)-6 in a dose-dependent manner. Further, I. dentata inhibited the UVB-induced expression of cyclooxygenase (COX)-2. Furthermore, I. dentata inhibited the phosphorylation of c-Jun NH2-terminal kinase and p38 MAPKs, suggesting that it inhibits the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression, by blocking MAPK phosphorylation. These results suggest that I. dentate can potentially protect against UVB-induced skin inflammation.

Effect of Cnidium japonicum Miq. Crude Extracts on UVB-induced Photoaging Damage in Human Keratinocytes (HaCaT 세포에서 UVB로 유도된 광노화에 대한 갯사상자 추출물의 효능)

  • Eun Seong Lee;Jung Hwan Oh;Chang-Suk Kong;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.414-421
    • /
    • 2023
  • Cnidium japonicum (C. japonicum) is a type of halophyte that inhabits soil of a high salinity, and according to previous studies, it is known to have antitumor effects. However, the skin's protective effect, particularly against UVB irradiation, has not been revealed. In this study, C. japonicum crude extract was studied to determine its effect on damage to human keratinocytes (HaCaT) induced by UVB irradiation, and ROS assays were performed, the results of which showed that C. japonicum crude extract affects UVB-induced photoaging damage in human keratinocytes. To examine inhibitory effects against the expressions of MMPs, RT-PCR and Western blot assay were performed by treating the crude extract at concentrations of 10, 50, and 100 ㎍/ml by irradiating UVB at 15 mJ/cm2. As a result, it was confirmed that the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-9 decreased in the group treated with C. japonicum crude extract, which also effectively regulated the antioxidant defense mechanism pathway by activating JNK, ERK, and p38. In conclusion, the current study suggested the possibility that C. japonicum could be used as a raw material for anti-photoaging cosmeceuticals in the future.

Anti-inflammatory Activity of Fucoidan with Blocking NF-κB and STAT1 in Human Keratinocytes Cells

  • Ryu, Min Ju;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Fucoidan, a sulfated polysaccharide is found in several types of edible brown algae. It has shown numerous biological activities; however, the molecular mechanisms on the activity against atopic dermatitis have not been reported yet. We now examined the effects of fucoidan on chemokine production co-induced by TNF-α/IFN-γ, and the possible mechanisms underlying these biological effects. Our data showed that fucoidan inhibited the TNF-α/IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophagederived chemokine (MDC) mRNA in human keratinocytes HaCaT cells. Also, fucoidan suppressed phosphorylation of nuclear factor kappa B (NF-κB) and activation of signal transducer and activator of transcription (STAT)1 in a dose-dependent manner. In addition, fucoidan significantly inhibited activation of extracellular-signal-regulated kinases (ERK) phosphorylation. These data indicate that fucoidan shows anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines by blocking NF-κB, STAT1, and ERK1/2 activation, suggestive of as used as a therapeutic application in inflammatory skin diseases, such as atopic dermatitis.

Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

  • Fernando, Pattage Madushan Dilhara Jayatissa;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Hewage, Susara Ruwan Kumara Madduma;Chae, Sung Wook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases.

The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes (HaCaT 세포에서 회향 열매의 피부장벽기능과 hyaluronic acid 생성에 미치는 영향)

  • Yu, Hak Yin;Yang, In Jun;Lincha, V.R;Park, In Sik;Lee, Dong-Ung;Shin, Heung Mook
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.880-888
    • /
    • 2015
  • Foeniculum vulgare (FV) has long been used in traditional medicine for the treatment of inflammatory diseases. In addition, it is usually known as an important medicinal and aromatic plant widely used as a carminative, digestive, lactogogue, and diuretic, and for treating respiratory and gastrointestinal disorders. The skin barrier protects against the invasion of pathogens, fends off chemical and physical assaults, and protects against extensive water loss. In this study, the effects of solvent-fractionated FV fruits on strengthening the skin barrier and maintaining moisture, as well as their antifungal activity, were investigated in human keratinocyte (HaCaT) cells. The expression of involucrin, loricrin, filaggrin, hyaluronic acid synthase, human β defensin, and cathelicidin genes and proteins was measured by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. The production of hyaluronic acid was determined by enzyme-linked immunosorbent assay (ELISA). The butanol fraction increased the expression of involucrin and filaggrin. Both the ethyl acetate and the butanol fractions increased hyaluronic acid production by promoting the expression of hyaluronic acid synthase-1. Although the antimicrobial peptides were increased by FV crude extract and its fractions, the samples did not show a significant effect compared to the normal group. These results suggest that the butanol fraction of FV could be very useful in cosmetics for the treatment of dermatological diseases.

Peptides-derived from Scales of Branchiostegus japonicus Inhibit Ultraviolet B-induced Oxidative Damage and Photo-aging in Skin Cells (피부세포에서 옥돔 비늘로부터 추출한 펩타이드의 UVB에 대한 산화적 손상 및 광 노화 억제)

  • Oh, Min Chang;Kim, Ki Cheon;Ko, Chang-ik;Ahn, Yong Seok;Hyun, Jin Won
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.269-275
    • /
    • 2015
  • Collagen peptides, which are found at high concentrations in the human body, are present in animal bones and the skin of marine organisms, namely, fish scales. Collagen is the most abundant structural protein of various connective tissues in animals. Furthermore, it is widely used in biomedical material, pharmaceutical, cosmetic, food, and leather industries. Peptides extracted from scales of various fish protect against ultraviolet B (UVB)-induced skin damage and photo-aging. However, the protective effects of collagen peptides derived from the scales of Branchiostegus japonicus against UVB exposure are unclear. This study investigated the effects of peptides larger than 1 kDa (high-molecular weight peptides [HMP]) and smaller than 1 kDa (low-molecular weight peptides [LMP]), derived from extracts of B. japonicus scales, against UVB-induced skin damage and photo-aging. These peptides scavenged 1,1-diphenyl-2-picrylhydrazyl radicals in a dose-dependent manner. In UVB-exposed HaCaT human keratinocytes, LMP inhibited 8-isoprostane generation, a marker of cellular lipid peroxidation. The peptides also suppressed the UVB-induced increase in tyrosinase activity and melanin content in B16F10 mouse melanoma cells. In addition, the LMP and HMP treatment suppressed UVB-induced elastase and matrix metalloproteinase-1 activities in the HaCaT cells. These results indicate that peptides derived from B. japonicus scales have antioxidant, antiphoto-aging, and skin-whitening effects.

UV-induced Photodamage - attenuating Properties of Water Extract from Lentinuls edodes (피부각질형성세포에서 표고버섯 물 추출물의 피부노화 억제 효과)

  • Lee, Jung Im;Oh, Jung Hwan;Park, So Young;Kim, Hye Ran;Jung, Kyung Im;Jeon, Byung-Jin;Kim, Dongmin;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.877-885
    • /
    • 2020
  • Lentinuls edodes has been used for traditional food and medicine around Asia, and a variety of biological effects have been reported. In this study, L. edodes water extract (LWE) was investigated for its anti-photodamage effect in HaCaT keratinocytes. To perform the necessary assays, L. edodes was extracted with distilled water for 8 hr at 40℃ in an extract tank. Anti-photodamage activity was assessed using a scratch wound healing assay, cell proliferation, and a reactive oxygen species (ROS) scavenging test and by measuring the mRNA and protein expression levels of matrix metalloproteinases (MMPs) and type I procollagen. MMPs and collagen expression are major markers of UV-induced photodamage in skin. Prior to photodamage analysis, the total polyphenol and β-glucan contents of the LWE were evaluated and found to be 4.64 mg GAE/g DW and 165.96 mg/g, respectively. Treatment with LWE induced cell migration and cell proliferation in UV-irradiated HaCaT cells, and LWE effectively scavenged the ROS induced by H2O2 and UVB irradiation in HaCaT cells. UVB irradiation induced ROS generation and led to increased production of MMP-1 and MMP-9 and to decreased collagen production in human keratinocytes. Treatment with LWE upregulated the expression levels of MMP-1, MMP-9, and type I procollagen in UVB-irradiated HaCaT cells. This study suggests that LWE could be used to develop cosmetic materials with anti-photodamage effects.

Atorvastatin and Fluvastatin Can Reduce IL-1β-induced Inflammatory Responses in Human Keratinocytes (Atorvastatin 그리고 fluvastatin 약물의 IL-1β-유도 염증반응 억제 효과)

  • Choe, Yeong-In;Moon, Kyoung Mi;Yoo, Jae Cheal;Byun, June-Ho;Hwang, Sun-Chul;Moon, Dong Kyu;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.418-424
    • /
    • 2021
  • Skin inflammation (dermatitis) is caused by varying skin damage due to ultraviolet radiation and microbial infection. Currently prescribed drugs for dermatitis include anti-histamine and steroid drug classes that soothe inflammation. However, incorrect or prolonged use of steroids can cause weakening of skin barriers as well as osteoporosis. Therefore, treating dermatitis with a drug that has minimal side effects is important. Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, are cholesterol-lowering drugs that have been widely treated for hyperlipidemia and cardiovascular diseases. Interestingly, recent studies have shown the anti-inflammatory effects of statins in both experimental and clinical models for of osteoarthritis. This study investigated the possible anti-inflammatory effects of atorvastatin and fluvastatin in human keratinocytes (HaCaT cells), which are crucial components of skin barriers. Stimulation of HaCaT cells with IL-1β increased the expression of the COX2 protein, a major player of inflammatory responses. However, this induction of the COX2 protein was downregulated by pretreatments with atorvastatin and fluvastatin. Treatment with IL-1ß-induced the upregulation of other inflammatory genes (such as iNOS and MMP-1) and these expressions were similarly lowered by these two statin drug treatments. Taken together, these results indicated that atorvastatin and fluvastatin can reduce IL-1β-induced inflammatory responses in HaCaT cells. In conclusion, the findings suggest that atorvastatin and fluvastatin can be potential modulators for ameliorating skin inflammation.

Fructose 1.6-diphosphate Prevents Cyclooxygenase-2 and Matrix Metalloproteinases Expression by Inhibition of UVB-induced Signaling Cascades in HaCaT Keratinocytes (인체각질형성세포에서 Fructose 1,6-diphosphate의 자외선에 의해 유도되는 Cyclooxygenase-2 and Matrix Metalloproteinases의 발현억제기전)

  • Soo Mi, Ahn;Ji Hyun, Kim;Byeong Gon, Lee;Soo Hwan, Lee;Ih Seoup, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.247-251
    • /
    • 2004
  • UV radiation exerts various influences in the skin, including photoaging and inflammation (1). The MMPs (Matrix metalloproteinases), which are induced by UV irradiation, can degrade matrix proteins, and these results in a collagen deficiency in photodamaged skin that leads to skin wrinkling. It has been known that the production of PGE$_2$ stimulates MMPs expression, and inhibits procollagen (2). Thus, it is possible that the induction of MMPs and the inhibition of matrix protein synthesis by UV -induced PGE$_2$ may play some role in UV-induced collagen deficiency in photoaged skin. Fructose-1,6-diphosphate (FDP), a glycolytic metabolite, is reported to have cytoprotective effects against ischemia and postischemic reperfusion injury of brain and heart, presumably by augmenting anaerobic carbohydrate metabolism (3). And also, FDP significantly prevent skin aging by decreasing facial winkle compared with vehicle alone after 6 months of use. We studied the mechanism of anti-aging effect of FDP on UVB-irradiated HaCaT keratinocyte model. FDP has protective role in UVB injured keratinocyte by attenuating prostaglandin E$_2$ (PGE$_2$) production and COX-2 expression. And FDP also suppressed UVB-induced MMP-2 expression. Further, to delineate the inhibition of UVB-induced COX-2 and MMPs expression with cell signaling pathways, treatment of FDP to HaCaT keratinocytes resulted in marked inhibition of UVB-induced phosphorylation of ERK1/2, JNK. It also prevents UV induced NFB translocation, which are activated by cellular inflammatory signal. Our results indicate that FDP has protecting effects in UV-injured skin aging by decreasing UVB-induced COX-2 and MMPs expression, which are possibly through blocking UVB-induced signal cascades.

Fucoxanthin Protects Cultured Human Keratinocytes against Oxidative Stress by Blocking Free Radicals and Inhibiting Apoptosis

  • Zheng, Jian;Piao, Mei Jing;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.270-276
    • /
    • 2013
  • Fucoxanthin is an important carotenoid derived from edible brown seaweeds and is used in indigenous herbal medicines. The aim of the present study was to examine the cytoprotective effects of fucoxanthin against hydrogen peroxide-induced cell damage. Fucoxanthin decreased the level of intracellular reactive oxygen species, as assessed by fluorescence spectrometry performed after staining cultured human HaCaT keratinocytes with 2',7'-dichlorodihydrofluorescein diacetate. In addition, electron spin resonance spectrometry showed that fucoxanthin scavenged hydroxyl radical generated by the Fenton reaction in a cell-free system. Fucoxanthin also inhibited comet tail formation and phospho-histone H2A.X expression, suggesting that it prevents hydrogen peroxide-induced cellular DNA damage. Furthermore, the compound reduced the number of apoptotic bodies stained with Hoechst 33342, indicating that it protected keratinocytes against hydrogen peroxide-induced apoptotic cell death. Finally, fucoxanthin prevented the loss of mitochondrial membrane potential. These protective actions were accompanied by the down-regulation of apoptosis-promoting mediators (i.e., B-cell lymphoma-2-associated ${\times}$ protein, caspase-9, and caspase-3) and the up-regulation of an apoptosis inhibitor (B-cell lymphoma-2). Taken together, the results of this study suggest that fucoxanthin defends keratinocytes against oxidative damage by scavenging ROS and inhibiting apoptosis.