• 제목/요약/키워드: HVOF thermal spray

검색결과 41건 처리시간 0.024초

HVOF 용사법으로 제조된 WC-20%CrC-7%NiCr 코팅의 고온산화연구 (A Study on High Temperature Oxidation of WC-20%CrC-7%NiCr coatings by HVOF Thermal Spray)

  • 송기오;;윤재홍;조동율;주윤곤;방위;윤석조;황순영;정길봉
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.93-94
    • /
    • 2007
  • 최근 사회전반에 걸쳐 사용되어온 경질 Cr 코팅이 제조 시 발암물질로 알려져 있는 $Cr^{+6}$을 발생함에 따라 이를 대체할 수 있는 표면개질법이 대두되고 있다. 또한 경질 Cr 코팅은 일반적으로 $200^{\circ}C$의 온도에서부터 경도가 서서히 감소되며 $400^{\circ}C$ 이상에서는 사용하기 어려운 제한점이 있다. 따라서 이 이상의 고온 안정성을 가지는 우수한 표면개질법에 관한 연구가 활발히 진행되고 있다.

  • PDF

Capstan용 용사코팅의 내마모 특성 향상 방안 (A Methodological Study of the Wear-Resistant Property Improvement on the Thermal Spray Coating for Capstan)

  • 어순철
    • 한국분말재료학회지
    • /
    • 제7권2호
    • /
    • pp.63-70
    • /
    • 2000
  • Thermal spray coating process has proven to be effective at producing hard, dense, wear resistance coatings on the relatively mild substrates. Among several spraying techniques, HVOF (High Velocity Oxygen Fuel) and plasma coating processes, which are preferentially used for the wear resistance application such as capstans, have been applied in this study. The effects of pre-treatment, it-process and post-treatment parameters on the wear and mechanical properties of WC+12%Co, Cr3C2 and Al2O3 powder coatings have been investigated and correlated with the microstructures. The results indicated that the carbide coating was more preferable to the oxide coatings and the post-treatments consisting of vacuum annealing and sealing on carbide coatings led to significant improvements in wear resistance, adhesive strength and coating phase stabilization over the other processing techniques in this application.

  • PDF

초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅 (HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle)

  • 조동율;윤재홍;김길수;윤석조;백남기;박병철;천희곤
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

Friction, Wear and Adhesion of HVOF Coating of Co-alloy Powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Song, Ki-Oh;Joo, Yun-Kon;Fang, Wei;Zhang, Shihong;Youn, Suk-Jo;Chun, Hui-Gon;Hwang, Soon-Young
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.61-62
    • /
    • 2007
  • HVOF thermal spray coating of micron size Co-alloy powder has been studied for the durability improvement of high velocity spindle (HVS). Optimal coating process of this system for the best surface properties is hydrogen flow rate 75 FMR, oxygen flow rate 38-42 FMR, feed rate 30 g/min at spray distance 5 inch. Friction coefficient (FC) and wear trace (WT) decrease increasing coating surface temperature from 25$^{\circ}$C to 538$^{\circ}$C due to the higher lubricant effects of the oxides at the higher temperature. At the study of adhesion of T800 coating on a light metal alloy Ti-6Al-4V (Ti64) tensile bond strength (TBS) and tensile fracture location (TFL) of Ti64/T800 are 8,740 psi and near middle of T800 coating respectively. This shows that adhesion of Ti64/T800 is higher than the cohesion strength (8,740 psi) of T800 coating. Therefore T800 coating is strongly advisable for the surface coating on HVS such as high speed air-bearing spindle.

  • PDF

최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성 (Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process)

  • 송기오;조동율;윤재홍;방위;윤석조;윤국태;서창희;황순영;하성식
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.

A Study on the Friction and Wear Properties of Tribaloy 800 Coating by HVOF Thermal Spraying

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Song, Ki-Oh;Back, Nam-Ki;Chun, Hui-Gon;Hwang, Soon-Young
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.240-244
    • /
    • 2006
  • Tribaloy 800 (T800) powder is coated on the Inconel 718 substrate by the optimal High Velocity Oxy-Fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of the possibility of replacing of the widely used classical chrome plating, friction, wear properties and sliding wear mechanism of coatings are investigated using reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C). Both at room temperature and at $538^{\circ}C$, friction coefficients and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as $CoO,\;Co_3O_4,\;MoO_2,\;MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through complicated mixed wear mechanisms. The sliding surfaces are worn by the mixed mechanisms such as oxidative wear, abrasion, slurry erosion. The brittle oxide particles and melts and partial-melts play roles as solid and liquid lubricant reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the surfaces vulnerable to frictional heat and wear.

전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향 (Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition)

  • 허용석;박상현;한인섭;우상국;정연길;백운규;이기성
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

최적 고속화염용사법으로 제조된 Diamalloy4006 코팅의 내마모 특성 (Wear Property of Diamalloy-4006 Coating Prepared by OCP HVOF Thermal Spraying)

  • 주윤곤;윤재홍;정연길;이재현
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.442-449
    • /
    • 2015
  • The effects of coating parameters were investigated in wear resistance coatings of Diamalloy-406 on Inconel 718 to obtain an optimum coating condition by high velocity oxy-fuel spraying. The coating parameters, the flow rates of source gases (hydrogen and oxygen), the powder feed rate, and the spray distance, were designed by the Taguchi method. The optimal conditions were determined: oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min, and spray distance 7 inch. Friction coefficients of the coating and the substrate decreased with an increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. The friction coefficient of Diamalloy-4006 coating decreased as the sliding surface temperature increased from $0.43{\pm}0.01$ at $25^{\circ}C$ to $0.29{\pm}0.01$ at $450^{\circ}C$. The wear trace and wear depth of the coating were smaller than the substrate at all temperatures tested. The relationship between spray parameters and wear resistance was discussed extensively, based on the measured roughness, hardness, and porosity in each coating.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구 (A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying)

  • 배명환;박병호;정화;박희성
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.