• Title/Summary/Keyword: HVOF process

Search Result 46, Processing Time 0.018 seconds

Anti-Corrosion Characteristics of WC-based Alloy Coatings Fabricated by HVOF Process - Polarization Characteristics in Acid Solution - (HVOF 용사법에 의해 제조된 WC계 합금 코팅층의 방식특성(I) - 산성용액에서의 분극특성 -)

  • Kim, Tae-Yong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.72-77
    • /
    • 2014
  • The aim of this study to investigate polarization characteristics of WC-based alloy coatings fabricated by high velocity oxygen fuel(HVOF) process. The coatings were fabricated by HVOF process with WC-CrC-Ni, WC-Co-Cr, WC-Co composite powders. Corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. WC-Co-Cr coating showed more incorrodible characteristics than other coatings at solution pH 2. WC-CrC-Ni coating was more favorable anti-corrosion characteristics than other coatings at solution with pH 6.

Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface (HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향)

  • Kim, Kibeom;Kim, Kapbae;Jung, Jongmin;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.

A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes (노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구)

  • Baik, Jae-Sang;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF

The Micro Structure Characteristics of Coating Layer on SM490B with HVOF Coating (HVOF용사 코팅한 SM490B 코팅층의 미시조직 특성)

  • Nam Ki-Soo;Cho Won-ik;Yoon Myung-Jin;Kim Byung-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • High velocity oxy-fuel thermally sprayed coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks. The hard WC phase in the coating resists to the wear while the soft metallic Co increases the adhesive and cohesive bonding properties. The coating properties deposited by the HVOF process are greatly dependent on the feedstock materials and processing parameters. The effects of the feedstock material and process coating parameters including the in-flight particle parameters and resultant coating microstructures were observed in this paper.

Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating (세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향)

  • Lee, J.I.;Ur, S.C.;Lee, Y.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF

Anti-Corrosion Characteristics of WC-based Alloy Coatings Fabricated by HVOF Process - Polarization Characteristics in Alkaline Solution - (HVOF 용사법에 의해 제조된 WC계 합금 코팅층의 방식특성(II) - 알칼리 용액에서의 분극특성 -)

  • Kim, Tae-Yong;Kim, Yeong-Sik;Kim, Jae-Dong
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.40-44
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of WC-based alloy coatings in alkaline solution. The coatings were fabricated with WC-CrC-Ni, WC-Co-Cr and WC-Co composite powders by HVOF process. Corrosion tests of coatings and substrate were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be studied from polarization curve, and corrosion behavior was analyzed by SEM and EDS. WC-Co-Cr coating and WC-CrC-Ni coating showed more favorable anti-corrosion characteristics than WC-Co coating and substrate at solution with pH 8 and pH 13.

Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating (HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측)

  • Jeon, Junhyub;Seo, Namhyuk;Lee, Jong Jae;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.478-482
    • /
    • 2021
  • The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

A Process Optimization of HVOF on ALBC3 by Experiments Design (실험계획법을 이용한 ALBC3에 대한 고속화염용사의 최적 공정 설계)

  • Kim, Young-Moon;Lim, Byung-Chul;Kim, Min-Tae;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.448-453
    • /
    • 2016
  • Erosion and abrasion caused by cavitation damage occur in fluid equipment, such as ships or impellers. Similarly, the equipment damage from noise and vibration can shorten its life. This study analyzed the importance of the parameter characteristics of the process optimization of HVOF (High Velocity Oxygen Fuel spraying), which is generally used in a variety of industries for enhancing the resistibility from the cavitation phenomenon. The surface of the ALBC3 substrate was coated with an amorphous powder as a filler metal according to the experimental design using the Taguchi method, and then the characteristics with each parameter were analyzed using a porosity measurement test. The optimal process conditions was a combustion pressure of 80psi, coating distance of 270mm, gun speed of 200mm/s, and powder feed rate of 25g/min as a result of the HVOF coating by applying the experimental design. The combustion pressure, coating distance and powder feed rate were more than 25% and indicated a similar contribution rate, but the contribution rate of the gun speed was 19%, which was slightly less than the others. The contribution rate with each parameter was only slightly significant. On the other hand, all four parameters were found to be important in the contribution rate aspects of the HVOF coating process.