• Title/Summary/Keyword: HVDC System

Search Result 378, Processing Time 0.038 seconds

A New Definition of Short-circuit Ratio for Multi-converter HVDC Systems

  • Liu, Dengfeng;Shi, Dongyuan;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1958-1968
    • /
    • 2015
  • In this paper, a new definition of short-circuit ratio concept for multi-converter HVDC systems is proposed. Analysis results of voltage interaction between converters show that the reactive power-voltage characteristic of a converter has a dominant effect on voltage interaction level compared with its active power-voltage characteristic. Such a relation between converter reactive power and voltage interaction level supports taking the former into account in the definition of short-circuit ratio concept for multi-converter systems. The proposed definition is verified by the method of maximum power curve for various system configurations. Furthermore, a formula to calculate transient overvoltage for multi-converter systems is derived based on the proposed definition, and the efficiency of the derived formula is verified.

Power Quality Analysis Considering Contingency of STATCOM in Jeju Power Grid (제주계통의 STATCOM 상정사고를 고려한 전력품질 해석)

  • Ko, Ji-Han;Kim, Dong-Wan;Kim, Seong Hyun;Kim, Homin;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • This paper presents the modeling and contingency analysis of Jeju power system. For the analysis of contingency with simulation, thermal power plants, current source type HVDC systems, wind farms, STATCOMs and Jeju power load are modeled by PSCAD/EMTDC program. And three kinds of simulation are carried out. Firstly, two STATCOMSs are in normal operation. Secondly, one STATCOM is in fault. Lastly, all of STATCOMs are in fault. These comparative studies will be useful for evaluating the effectiveness of STATCOM to stabilize for the Jeju power system.

A Study on Solution against Core Saturation Instability at HVDC Converter

  • Yang, Byeong-Mo;Kim, Chan-Ki;Koh, Bong-Eun;Moon, Young-Hyun
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.297-304
    • /
    • 2002
  • The paper identifies a severe form of core saturation instability in a DC/AC interaction system. It then seeks solutions to the problem by HVDC control means. This is achieved by a proper design of the Voltage Dependent Current Order Limiter (VDCOL), the Current Regulate. and Timing Pulse generator. Supplementary control loops have also been introduced to result in a satisfactory performance as compared to that obtained one with the use of uncharacteristic harmonic filter on the AC side. All the options have been demonstrated through recovery performance of the DC link in response to both 1-phase and 3-phase 5 cycle faults on both rectifier and inverter commutating buses.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Vibration Analysis of Transformer DC bias Caused by HVDC based on EMD Reconstruction

  • Liu, Xingmou;Yang, Yongming;Huang, Yichen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.781-789
    • /
    • 2018
  • This paper proposes a new approach utilizing empirical mode decomposition (EMD) reconstruction to process vibration signals of a transformer under DC bias caused by high voltage direction transmission (HVDC), which is the potential cause of additional vibration and noise from transformer. Firstly, the Calculation Method is presented and a 3D model of transformer is simulated to analyze transformer deformation characteristic and the result indicate the main vibration is produced along axial direction of three core limbs. Vibration test system has been built and test points on the core and shell of transformer have been measured. Then, the signal reconstruction method for transformer vibration based on EMD is proposed. Through the EMD decomposition, the corrupted noise can be selectively reconstructed by the certain frequency IMFs and better vibration signals of transformer have been obtained. After EMD reconstruction, the vibrations are compared between transformer in normal work and with DC bias. When DC bias occurs, odd harmonics, vibration of core and shell, behave as a nonlinear increase and the even harmonics keep unchanged with DC current. Experiment results are provided to collaborate our theoretical analysis and to illustrate the effectiveness of the proposed EMD method.

A Study on the Application of FTR to Jeju Power System (제주 계통에서의 FTR 적용 방안에 관한 연구)

  • Kim, Jung-Woo;Chun, Yeong-Han;Nam, Hae-Kon;Yang, Jeong-Jae;Jang, Si-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.433-434
    • /
    • 2007
  • 제주계통은 육지에 비해 상대적으로 작은 계통 규모(300$\sim$600MW)를 갖고 있지만, HVDC 연계선에 의한 의존도가 30$\sim$50%로 매우 높다. 또한, 계통에 비해 그 규모가 큰 100 MW 발전기 2대가 현재 새로 운영 중에 있는 등, 주파수 안정도 측면에서 많은 부분이 고려되어야한다. 2006년 4월 1일 제주도 정전 사고도 주파수 안정도 문제에 기인하고 있고, 이는 HVDC 연계선 탈락 시 독립된 계통으로서의 주파수 안정도 부분에 대한 연구가 필요함을 보여준다. 2006년 4월 1일 이후, 제주도의 전력 계통은 발전설비 증대와 예비력 확보, 부하차단 방식변화 등으로 안정적인 계통 운영을 위해 전반적인 변화를 주었다. 하지만, 지난 대규모 정전사고에서 알 수 있듯이, HVDC 연계선에 의한 의존도가 최대 50%로 높은 제주계통의 특성상, HVCD 연계선이 탈락된 이후, 독립계통으로서의 안정적인 운영을 위한 노력이 필요하다.

  • PDF

Study on the Air Insulation Design Guideline for ±500 kV Double Bipole Transmission Line with Metallic Return Conductor (도체귀로형 ±500 kV Double Bipole 송전선로 공기절연에 관한 연구)

  • Shin, Kooyong;Kwon, Gumin;Song, Seongwhan;Woo, Jungwook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • Recently, the biggest issue in the electricity industry is the increase in renewable energy, and various technologies are being developed to ensure the capacity of the power system. In addition, super-grids linking power systems are being pushed to utilize eco-friendly energy between countries and regions worldwide. The HVDC transmission technology is required to link the power network between regions with different characteristics of the power system such as frequency and voltage. Until now, Korea has applied HVDC transmission technology that connects mainland and Jeju Island with submarine cables. But, the HVDC transmission technology is still developing for long-distance high-capacity power transmission from power parks on the east coast to load-tight areas near the metropolitan area. Considering the high population density and mountainous domestic environment, it is pushing for commercialization of the design technology of the ${\pm}500kV$ Double Bipole with metallic return wire transmission line to transmit large-scale power of 8 GW using minimal right of ways. In this paper, the insulation characteristics were studied for the design of double-bipole transmission tower with metallic return wire, which is the first time in the world. And the air insulation characteristics resistant to the various overvoltage phenomena occurring on transmission lines were verified through a full-scale impulse voltage test.

Power Quality Analysis of Jeju Power System during HVDC Overhaul using PSCAD/EMTDC (PSCAD/EMTDC에 의한 직류연계선 오버홀시 제주계통의 전력품질 분석)

  • Kang, Bo-Seung;Kim, Jae-Hong;Kim, Eel-Hwan;Kim, Se-Ho;Oh, Seong-Bo;Song, Ki-Heouk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.82-84
    • /
    • 2008
  • This paper presents the modeling and power quality analysis of Jeju island power system connected with wind farm, and thermal power plant. It is for indicating the influence of wind farm operation in steady and transient state in Jeju island power system during the HVDC system overhaul period. For the computer simulation, three kinds of main item are modeled, which are 67[MW] wind farm, thermal power plant and Jeju power load. To analyze the influence of the wind power generation to the Jeju power system, two kinds of simulations are carried out by using the PSCAD/EMTDC program. One is the steady state operation under the variable speed wind, and the other is the transient state operation when all of wind farms in Jeju island are disconnected from the Jeju power grid instantaneously on the rated power output. With the comparison of these results, it is useful for analyzing the power quality of Jeju power system versus wind power generation.

  • PDF

Tracking/Erosion Resistance Analysis of Nano-Al(OH)3 Filled Silicone Rubber Insulating Materials for High Voltage DC Applications

  • Kannan, P.;Sivakumar, M.;Mekala, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.355-363
    • /
    • 2015
  • HVDC technology has become popular as an economic mode of bulk power transmission over very long distances. Polymeric insulators in HVDC power transmission lines are affected by surface tracking and erosion problems due to contamination deposit, which pose a greater challenge in maintaining the reliability of the HVDC system. In addition, polymeric insulators are also naturally affected by aging due to various environmental stresses, which in turn accelerates the surface tracking and erosion problems. Research works towards the improvement of tracking and erosion resistance of polymeric insulators by adding nano-sized fillers in the base material are being carried out worldwide. However, surface tracking and erosion performance of nano-filled aged polymeric insulators for HVDC applications are not well reported. Hence, in the present work, tracking and erosion resistance of the nano $Al(OH)_3$ filled silicone rubber insulation material has been evaluated under DC voltages at different filler concentrations and aged conditions, as per IEC 60587 test procedures. Leakage current and contact angle measurements were carried out to understand the surface hydrophobicity. Moving average technique was used to analyze the trend followed by leakage current. Water aged specimen shows less tracking resistance when compared with thermal aged specimen. It is observed that nano-filler concentration of 5% is even sufficient to get better tracking/erosion resistance under DC voltages.

Characteristics of Partial Discharge Under HVDC in SF6 Gas (SF6 가스 중 직류 고전압 하에서 부분방전 특성)

  • Kim, Min-Su;Kim, Sun-Jae;Jeong, Gi-Woo;Jo, Hyang-Eun;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.238-243
    • /
    • 2014
  • This paper dealt with the measurement and analysis of partial discharge (PD) under high voltage direct current (HVDC) in SF6 gas. Electrode systems such as a protrusion on conductor (POC), a protrusion on enclosure (POE), a crack on epoxy plate and a free particle (FP) were fabricated to simulate the insulation defects. The analysis system was designed with a Time-Frequency (T-F) map algorithm programed based on LabVIEW. This can arrange the acquired PD pulses into frequency and time domain. A HVDC power source is composed of a transformer (220 V/50 kV), a diode (100 kV) and a capacitor (50 kV, 0.5 ${\mu}F$). The gap between the electrodes is 3 mm, and the $SF_6$ gas was set at 5 bar. PD pulses were detected by a 50 ${\Omega}$ non-inductive resistor. In the analysis, PD pulses were distributed below 0.5 MHz and 20 ns ~ 35 ns for the POC, 0.7 MHz ~ 1.7 MHz, below 0.6 MHz and 10 ns ~ 40 ns and 60 ns ~125 ns for the POE, below 0.1 MHz and 135 ns ~ 215 ns for the crack, and below 1.6 MHz and 250 ns for the FP.