• Title/Summary/Keyword: HVAC duct

Search Result 48, Processing Time 0.027 seconds

Study on Horizontal and Vertical Temperature Analysis of Cable Fire in Common Duct using Room Corner Experiment (룸코너 실험을 이용한 공동구 케이블 화재 시 수평·수직 방향 온도 분석에 관한 연구)

  • JaeYeop Kim;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.634-643
    • /
    • 2023
  • Purpose: Underground common duct fires are steadily occurring, and the proportion of property damage is particularly large among property and human casualties caused by fires. Especially, cable fires that occur in common areas can spread vertically quickly and pose a great risk. This paper aims to scientifically analyze the nature of the fire by reproducing the fire through experiments. Method: To analyze the characteristics of cable fires in underground common duct, heat release rate and temperature changes were measured through Room-corner (ISO 9705) test, and the vertical and horizontal propagation of cable fires was quantitatively compared and analyzed. Result: The Room Corner Test (ISO 9705) was used to compare the temperature changes at each data logger point. The results showed that the time it took for the fire to reach the ignition temperature in the horizontal and vertical directions from the center point of the first-tier cable was 589 seconds and 536 seconds, respectively, which means that the vertical fire propagation is 53 seconds faster than the horizontal propagation. This proves that the vertical propagation of fire is relatively faster than the horizontal propagation. The horizontal propagation speed of the fire was also compared for each floor cable tray. The results showed that the third-tier cable propagated at 3.4 times the speed of the second-tier cable, and the second-tier cable propagated at 1.5 times the speed of the first-tier cable. This means that the higher the cable is located, the faster the fire spreads and the larger the fire becomes. Conclusion: This study identified the risks of cable fires and analyzed the risks of vertical fire propagation during cable fires based on the results of the Room Corner Test. Studies to prevent the spread of fire and fire response policies to prevent vertical fire propagation are required. The results of this study are expected to be used to assess the fire risk of common areas and other fires.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU (해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석)

  • Jung, Young In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.610-616
    • /
    • 2020
  • This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.

Design Optimization for Air Ducts and Fluid Pipes at Electromagnetic Pulse(EMP) Shield in Highly Secured Facilities (EMP 방호시설의 덕트 및 배관 최적 설계 방안)

  • Pang, Seung-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • This study conducted a computational fluid dynamics(CFD) analysis to find an appropriate diameter or sectional area of air ducts and fluid pipes which have an electromagnetic pulse(EMP) shied to protect indoor electronic devices in special buildings like military fortifications. The result shows that the optimized outdoor air intake size can be defined with either the ratio of the maximum air velocity in the supply duct to the air intake size, or the shape ratio of indoor supply diffuser to the outdoor air intake. In the case of water channel, the fluid velocity at EMP shield with the identical size of the pipe, decreases by 25% in average due to the resistance of the shield. The enlargement of diameter at the shield, 2 step, improves the fluid flow. It illustrated that the diameter of downstream pipe size is 1step larger than the upstream for providing the design flow rate. The shield increases friction and resistance, in the case of oil pipe, so the average flow velocity at the middle of the shield increase by 50% in average. In consideration of the fluid viscosity, the oil pipe should be enlarged 4 or 5 step from the typical design configuration. Therefore, the fluid channel size for air, water, and oil, should be reconsidered by the engineering approach when EMP shield is placed in the middle of channel.

Developement of a Design Manual for Kitchen Facility in Foodservice Outlets: A Case Study on a Seolleongtang Specialized Restaurant (푸드서비스시설의 주방 설비 산정 매뉴얼 개발: 설렁탕 전문 식당 사례 적용)

  • Choi, Gyeong-Gy;Chang, Hye-Ja
    • Journal of the FoodService Safety
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2021
  • Concerns regarding work and food safety in foodservice operations are growing. The purpose of the study is to suggest guidelines for designing foodservice facilities, including school foodservices and Korean restaurants. A case of a franchise restaurant specializing in a Korean food item, Seolleongtang, was used to explain the facility design. The contents of the manual included ways to determine space allocation, calculate the application of utilities and the diameters of supply utility pipelines, and suggestions on how to decide on air conditioning equipment. The standards of the American Gas Association and the Japan Foodservice Equipment Association (JFEA) were applied to design the restaurant space. The JFEA standards and knowledge based on experience and statistics were applied to calculate the usage of utilities like fuel and water. The standards of JFEA and the Society of Heating, Air-Conditioning, and Sanitary Engineers of Japan were applied to calculate the diameters of the water supply and drainage pipelines. For the setting of the heating, ventilation, and air conditioning systems, three ways to carry out the calculation of effective ventilation were explained, as well as options to dicide the standard parameters of the duct and ventilation fans. This manual can contribute to the design of effective and efficient foodservice facilities and help secure the work safety of foodservice employees thereby ensuring food safety.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.