• 제목/요약/키워드: HUMAN INTERFERENCE

Search Result 324, Processing Time 0.029 seconds

The Matrix Effect of Biological Concomitant Element on the Signal Intensity of Ge, As, And Se in Inductively Coupled Plasma/Mass Spectrometry

  • Park, Kyung-Su;Kim, Sun-Tae;Kim, Young-Man;Kim, Yun-je;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1389-1393
    • /
    • 2002
  • The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 ㎍/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S, and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression. We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen.

TSG101 Physically Interacts with Linear Ubiquitin Chain Assembly Complex (LUBAC) and Upregulates the TNFα-Induced NF-κB Activation

  • Eunju Kim;Hyunchu Cho;Gaeul Lee;Heawon Baek;In Young Lee;Eui-Ju Choi
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.430-440
    • /
    • 2023
  • Linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin E3 ligase complex composed of HOIP, HOIL-1L, and SHARPIN that catalyzes the formation of linear/M1-linked ubiquitin chain. It has been shown to play a pivotal role in the nuclear factor (NF)-κB signaling induced by proinflammatory stimuli. Here, we found that tumor susceptibility gene (TSG101) physically interacts with HOIP, a catalytic component of LUBAC, and potentiates LUBAC activity. Depletion of TSG101 expression by RNA interference decreased TNFα-induced linear ubiquitination and the formation of TNFα receptor 1 signaling complex (TNF-RSC). Furthermore, TSG101 facilitated the TNFα-induced stimulation of the NF-κB pathway. Thus, we suggest that TSG101 functions as a positive modulator of HOIP that mediates TNFα-induced NF-κB signaling pathway.

Expression of PACT and EIF2C2, Implicated in RNAi and MicroRNA Pathways, in Various Human Cell Lines

  • Lee, Yong-Sun;Jeon, Yesu;Park, Jong-Hoon;Hwang, Deog-Su;Dutta, Anindya
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2004
  • MicroRNA and siRNA (small interfering RNA), representative members of small RNA, exert their effects on target gene expression through association with protein complexes called miRNP (microRNA associated ribonucleoproteins) and RISC (RNA induced silencing complex), respectively. Although the protein complexes are yet to be fully characterized, human EIF2C2 protein has been identified as a component of both miRNP and RISC. In this report, we raised antiserum against EIF2C2 in order to begin understanding the protein complexes. An immunoblot result indicates that EIF2C2 protein is ubiquitously expressed in a variety of cell lines from human and mouse. EIF2C2 protein exists in both cellular compartments, as indicated by an immunoblot assay with a nuclear extract and a cytosolic fraction (S100 fraction) from HeLa S3 lysate. Depletion of EIF2C1 or EIF2C2 protein resulted in a decrease of microRNA, suggesting a possible role of these proteins in microRNA stability or biogenesis. We also prepared antiserum against dsRNA binding protein PACT, whose homologs in C. elegans and Drosophila are known to have a role in the RNAi (RNA interference) pathway. The expression of PACT protein was also observed in a wide range of cell lines.

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

Treatment of Dyrk1A-dependent Mental Retardation of Down Syndrome: Isolation of Human Dyrk1A-specific shRNA (다운증후군의 Dyrk1A 의존적 뇌기능저하의 치료: 인간 Dyrk1A 특이적 shRNA 발굴)

  • Jung, Min-Su;Kim, Yeun-Soo;Kim, Ju-Hyun;Kim, Joung-Hun;Chung, Sul-Hee;Song, Woo-Joo
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.317-321
    • /
    • 2009
  • Down syndrome (DS) results from overexpressed genes on an extra copy of human chromosome 21. Among various phenotypes seen in DS patients, mental retardation, such as learning and memory deficits, is a major factor that prevents DS individuals from leading fully independent lives. The Dyrk1A gene that plays a critical role in neurodevelopment has been isolated from chromosome 21, and transgenic mice with over-expression of Dyrk1A show severe hippocampal dependent learning and memory defects. In the present study, as an initial step to test the treatment of Dyrk1A dependent mental retardation phenotypes in model animals, we isolated human Dyrk1A specific lentiviral short hairpin RNA (shRNA) that inhibits the exogenous human Dyrk1A expression, but not the endogenous mouse expression in transgenic mice with human Dyrk1A overexpression. This limited and specific repression of exogenous human Dyrk1A will prove to be valuable information, if Dyrk1A dependent learning and memory defects in DS patients could be treated or at least ameliorated in vivo.

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.

Transceiver for Human Body Communication Using Frequency Selective Digital Transmission

  • Hyoung, Chang-Hee;Kang, Sung-Weon;Park, Seong-Ook;Kim, Youn-Tae
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.216-225
    • /
    • 2012
  • This paper presents a transceiver module for human body communications whereby a spread signal with a group of 64 Walsh codes is directly transferred through a human body at a chip rate of 32 Mcps. Frequency selective digital transmission moves the signal spectrum over 5 MHz without continuous frequency modulation and increases the immunity to induced interference by the processing gain. A simple receiver structure with no additional analog circuitry for the transmitter has been developed and has a sensitivity of 250 ${\mu}V_{pp}$. The high sensitivity of the receiver makes it possible to communicate between mobile devices using a human body as the transmission medium. It enables half-duplex communication of 2 Mbps within an operating range of up to 170 cm between the ultra-mobile PCs held between fingertips of each hand with a packet error rate of lower than $10^{-6}$. The transceiver module consumes 59 mA with a 3.3 V power supply.

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF

Inhibition of Porcine Endogenous Retrovirus Expression by RNA Interference (RNA 간섭을 통한 Porcine Endogenous Retrovirus의 발현 억제)

  • Lee, Hyun-A;Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2006
  • In recent years the number of patients waiting for organ transplantation has greatly outpaced the supply of human organs available, which leads to a renewed interest in pig-to-human xenotransplantation as an alternative. However, one of the biggest barriers in the xenotransplantation is presence of porcine endogenous retroviruses(PERV) that can infect human cells. In this study, to present a possible solution for this problem we tried to inhibit expression of PERVs using shRNAs(short hairpin RNA) at the level of RNA synthesis and virus release. The shRNA targeting the sequence of PERV A, B type was cloned into pSIREN-RetroQ vector under the control of polymerase-III U6-RNA gene promoter. Quantitative real-time PCR was performed to detect my alterations in mRNA production of PERV A, B targeted by the shRNA in each done. Depending on the target sequence of the shRNA, the transcription of PERV was decreased to as much as 4% and the number of progeny viruses was reduced to less than 1/200,000. Transgenic pigs producing such shRNAs may result in a highly reduced PERV expression in cells and organs, which is a prerequisite for safe xenotransplantations.

Knockdown of HMGN5 Expression by RNA Interference Induces Cell Cycle Arrest in Human Lung Cancer Cells

  • Chen, Peng;Wang, Xiu-Li;Ma, Zhong-Sen;Xu, Zhong;Jia, Bo;Ren, Jin;Hu, Yu-Xin;Zhang, Qing-Hua;Ma, Tian-Gang;Yan, Bing-Di;Yan, Qing-Zhu;Li, Yan-Lei;Li, Zhen;Yu, Jin-Yan;Gao, Rong;Fan, Na;Li, Bo;Yang, Jun-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3223-3228
    • /
    • 2012
  • HMGN5 is a typical member of the HMGN (high mobility group nucleosome-binding protein) family which may function as a nucleosomal binding and transcriptional activating protein. Overexpression of HMGN5 has been observed in several human tumors but its role in tumorigenesis has not been fully clarified. To investigate its significance for human lung cancer progression, we successfully constructed a shRNA expression lentiviral vector in which sense and antisense sequences targeting the human HMGN5 were linked with a 9-nucleotide loop. Inhibitory effects of siRNA on endogenous HMGN5 gene expression and protein synthesis were demonstrated via real-time RT-PCR and western blotting. We found HMGN5 silencing to significantly inhibit A549 and H1299 cell proliferation assessed by MTT, BrdU incorporation and colony formation assays. Furthermore, flow cytometry analysis showed that specific knockdown of HMGN5 slowed down the cell cycle at the G0/G1 phase and decreased the populations of A549 and H1299 cells at the S and G2/M phases. Taken together, these results suggest that HMGN5 is directly involved in regulation cell proliferation in A549 and H1299 cells by influencing signaling pathways involved in cell cycle progression. Thus, our finding suggests that targeting HMGN5 may be an effective strategy for human lung cancer treatment.