• Title/Summary/Keyword: HTSE cells

검색결과 46건 처리시간 0.385초

Inhibition of Adenosine Triphosphate-stimulated Mucin Secretion from Airway Epithelial Cells by Schizandrin

  • Heo, Ho-Jin;Lee, Hyun-Jae;Kim, Cheol-Su;Bae, Ki-Hwan;Kim, Young-Sik;Kang, Sam-Sik;Park, Yang-Chun;Kim, Yun-Hee;Seo, Un-Kyo;Seok, Jeong-Ho;Lee, Choong-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.251-254
    • /
    • 2006
  • Schizandrae Fructus has been used for controlling respiratory allergic or inflammatory diseases in folk medicine and their components, schizandrin, schizandrin-A and gomisin-A were reported to have diverse biological effects. In this study, we investigated whether schizandrin, schizandrin-A and gomisin-A affect adenosine triphosphate (ATP)-induced mucin secretion from cultured airway epithelial cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radio labeled using $^{3}H-glucosamine$ for 24 h and chased for 30 min in the presence of varying concentrations of each agent to assess the effects on $^{3}H-mucin$ secretion. The results were as follows: 1) schizandrin significantly inhibited ATP-induced mucin secretion; 2) However, schizandrin-A and gomisin-A did not affect ATP-induced mucin secretion, significantly. We conclude that schizandrin can inhibit ATP-induced mucin secretion by directly acting on airway mucin-secreting cells. Therefore, schizandrin should further be investigated for the possible use as mucoregulators in the treatment of inflammatory airway diseases.

Glycyrrhizin and Morroniside Stimulate Mucin Secretion from Cultured Airway Epithelial Cells

  • Heo, Ho-Jin;Lee, Hyun-Jae;Kim, Cheol-Su;Son, Kun-Ho;Kim, Young-Choong;Kim, Young-Sik;Kang, Sam-Sik;Park, Yang-Chun;Kim, Yun-Hee;Seo, Un-Kyo;Seok, Jeong-Ho;Lee, Choong-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권6호
    • /
    • pp.317-321
    • /
    • 2006
  • In this study, we investigated whether glycyrrhizin, prunetin and morroniside affect mucin secretion from cultured airway epithelial cells and compared the possible activities of these agents with the inhibitory action on mucin secretion by poly-L-lysine (PLL) and the stimulatory action by adenosine triphosphate (ATP). Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled using $^{3}H-glucosamine$ for 24 h and chased for 30 min in the presence of varying concentrations of each agent to assess the effects on $^{3}H-mucin$ secretion. The results were as follows: 1) glycyrrhizin and morroniside increased basal mucin secretion from airway; 2) prunetin did not affect basal mucin secretion; 3) glycyrrhizin did not inhibit ATP-induced mucin secretion. We conclude that glycyrrhizin and morroniside can increase basal mucin secretion, by directly acting on airway mucin-secreting cells and suggest that two compounds be further investigated for the possible use as mild expectorants during the treatment of inflammatory airway diseases.

Phellopterin Suppresses Airway Mucin Secretion induced by Adenosine Triphosphate

  • Heo, Ho-Jin;Kim, Cheol-Su;Lee, Hyun-Jae;Kim, Jin-Woong;Kim, Young-Sik;Kang, Sam-Sik;Seo, Un-Kyo;Kim, Yun-Hee;Park, Yang-Chun;Seok, JeongHo;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • 제14권4호
    • /
    • pp.202-206
    • /
    • 2006
  • Angelicae Dahiricae Radix has been used for controlling inflammatory respiratory diseases in oriental medicine and their components, phellopterin, isoimperatorin and byakangelicol were reported to have various biological effects. In this study, we investigated whether phellopterin, isoimperatorin and byakangelicol affect adenosine triphosphate(ATP)-induced mucin secretion from cultured airway epithelial cells. Confluent primary hamster tracheal surface epithelial(HTSE) cells were metabolically radiolabeled using $^3H$-glucosamine for 24 h and chased for 30 min in the presence of varying concentrations of each agent to assess the effects on $^3H$-mucin secretion. The results were as follows: 1) phellopterin significantly inhibited ATP-induced mucin secretion; 2) However, isoimperatorin and byakangelicol did not affect ATP-induced mucin secretion, significantly. This result suggests that phellopterin can regulate 'mucin secretion induced by ATP'-a phenomenon simulating mucus overproduction from inflamed airway epithelial cells-by directly acting on airway mucin-secreting cells. Therefore, phellopterin should further be investigated for the possible use as mucoregulators in the treatment of inflammatory airway diseases.

Effect of Imperatorin on Adenosine Triphosphate-stimulated Mucin Secretion from Airway Epithelial Cells

  • Heo, Ho-Jin;Kim, Cheol-Su;Lee, Hyun-Jae;Shin, Seung-Won;Kim, Young-Sik;Kang, Sam-Sik;Park, Yang-Chun;Kim, Yun-Hee;Seo, Un-Kyo;Seok, Jeong-Ho;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • 제14권4호
    • /
    • pp.235-239
    • /
    • 2006
  • Angelicae Koreanae Radix has been used for controlling inflammatory respiratory diseases in folk medicine and their components, imperatorin, marmesinin and oxypeucedanin were reported to have diverse biological effects. In this study, we investigated whether imperatorin, marmesinin and oxypeucedanin affect adenosine triphosphate(ATP)-induced mucin secretion from cultured airway epithelial cells. Confluent primary hamster tracheal surface epithelial(HTSE) cells were metabolically radiolabeled using $^3H$-glucosamine for 24 h and chased for 30 min in the presence of varying concentrations of each agent to assess the effects on $^3H$-mucin secretion. The results were as follows: 1) imperatorin significantly inhibited ATP-induced mucin secretion; 2) However, marmesinin and oxypeucedanin did not affect ATP-induced mucin secretion, significantly. We conclude that imperatorin might inhibit ATP-induced mucin secretion by directly acting on airway mucin-secreting cells. Therefore, imperatorin should further be investigated for the possible use as mucoregulators in the treatment of inflammatory airway diseases.

Effects of Three Compounds from Schizandrae Fructus and Uridine on Airway Mucin Secretion

  • Heo, Ho-Jin;Lee, Hyun-Jae;Kim, Cheol-Su;Bae, Ki-Hwan;Kim, Young-Sik;Kang, Sam-Sik;Seo, Un-Kyo;Kim, Yun-Hee;Park, Yang-Chun;Seok, Jeong-Ho;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.166-170
    • /
    • 2006
  • In this study, we investigated whether schizandrin, schizandrin-A, gomisin-A and uridine affect mucin secretion from cultured airway epithelial cells and compared the potential activities of these agents with the inhibitory action on mucin secretion by poly-1-lysine (PLL) and the stimulatory action by adenosine triphosphate (ATP). Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled using $^3H-glucosamine$ for 24 h and chased for 30 min in the presence of varying concentrations of each agent to assess the effects on $^3H-mucin$ secretion. The results were as follows: schizandrin-A and uridine increased mucin secretion at the highest concentrations ($2{\times}10^{-4}\;-\;10^{-3}M$). We conclude that schizandrin-A and uridine can stimulate mucin secretion via direct effect on airway mucin-secreting cells and suggest that these agents be further investigated for the potential use as mucoregulators during the treatment of chronic airway diseases.

Effects of Short-term Treatment of Daidzein, Puerarin, Genistein and Tumerone on Mucin Secretion from Cultured Airway Epithelial Cells

  • Heo, Ho-Jin;Lee, Hyun-Jae;Kim, Cheol-Su;Choi, Jae-Sue;Lee, Jung-Joon;Kim, Young-Sik;Kang, Sam-Sik;Kim, Yun-Hee;Park, Yang-Chun;Seok, Jeong-Ho;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.178-182
    • /
    • 2006
  • In this study, we investigated whether daidzein, puerarin, genistein and (+)-ar-tumerone affect mucin secretion from cultured airway epithelial cells and compared with the inhibitory action of poly-L-lysine (PLL) and the stimulatory action of adenosine triphosphate (ATP) on mucin secretion. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled using $^3H$-glucosamine for 24 h and chased for 30 min in the presence of varying concentrations of each agent to assess the effects on $^3H$-mucin secretion. The results were as follows: daidzein, puerarin, genistein and (+)-ar-tumerone did not affect mucin secretion at the highest concentrations $(10^{-3}M)$, during 30 min of treatment period. Basically, this finding suggests that daidzein, puerarin and genistein - 3 components derived from Puerariae Radix - and (+)-ar-tumerone derived from Curcumae Rhizoma might not function as a mucoregulator in various inflammatory respiratory diseases showing mucus hypersecretion, although further studies are needed.