• 제목/요약/키워드: HTSC(high-temperature-superconductor)

검색결과 10건 처리시간 0.029초

전기 에너지 저장을 위한 초전도 나노 합성 기술 (Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage)

  • 이상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

화학공정을 이용한 초전도 나노 분말 활성 (Fabrication of High Tc Superconducting Nano Powder Using Chemical Process)

  • 이상헌;김찬중;장건익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.547-548
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

  • PDF

전력기기 초전도 합성기술 (Fabrication Technology of high Tc Superconductor for Electrical Equipment)

  • 이상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권7호
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

적층형 고온초전도 전류도입선의 열 특성 해석 (Heat Characteristic Analysis of Stacking Type HTS Current Lead)

  • 두호익;임성우;홍세은;윤기웅;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.628-631
    • /
    • 2001
  • Current lead is one of the first proposed devices for the application of High Temperature-Superconductor(HTSC). The current lead provides high current for electrical machine using superconductor from room temperature. Its characteristics that is zero resistance and low heat transfer rate under critical temperature lead to research for the replacement of existing current lead with HTSC. In this paper, we investigated the temperature distributions of stacking type and rod type current lead with each cross-section area and length using Nastran program and compared each temperature distribution. It is obtained from this paper that stacking type current lead has flat temperature gradient and than rod type one and more stable operation as current lead is closely related with its cross-section area and length.

  • PDF

Fabrication of Oxide Thick Film for Renewable Electrical Energy Storage Technology

  • Lee, Sang-Heon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.186-189
    • /
    • 2005
  • We have fabricated superconducting HTSC ceramic thick films by chemical process. c-axis oriented HTSC thick films have been attempted bi-axially textured Ni tapes. The x-ray diffraction pattern of the HTSC thick films contained superconducting phase crystal. The critical temperature and critical current density was 110K.

2차원 Slab 모델을 이용한 초전도체 부상력 특성의 시뮬레이션 (The Simulation of the Characteristics of the Levitation Force in Superconductor Using 2D Slab Model)

  • 유제환;임윤철
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.44-50
    • /
    • 1998
  • This paper describes the simulation of the levitation force between permanent magnet and high Tc(critical temperature) superconductor(HTSC). Levitation force is evaluated numerically on the basis of the magnetic vector potential method and the critical state model. The superconductor is approximated to 2-D slab model. By performing computations, the following characteristics have been investigated: the process of the generation of hysteresis, the various hysteretic behaviors. The characteristics of hysteresis are important for the application to magnetic bearing, for the damping and the nonlinear stiffness is related to hysteresis.

전력계통 고장전류 저감을 위한 한류기술 및 초전도 저항형 한류기 개발 동향 분석

  • 이방욱;강종성;박권배;오일성
    • 한국초전도저온공학회지:초전도와저온공학
    • /
    • 제5권1호
    • /
    • pp.10-17
    • /
    • 2003
  • For limitation and interruption of short circuit currents from low voltage to extra high voltage applications, the electrical equipment including fuses and circuit breakers, are widely used today. But in order to anticipate increasing needs for effective and competitive device for limiting the growing fault current in electrical power systems, fault current limitation technologies and fault current limitation devices are widely introduced and investigated in these days. Furthermore, the applications of high temperature superconducting materials (HTSC) into the current limiting devices are new approach for developing of novel and effective col-rent limitation electrical equipment. In this research, the necessities of current limitation technology and the developed and developing current limitation devices for power systems are introduced. Finally, the investigation of resistive type fault current limiters which is under development by LG and KEPCO were introduced.

  • PDF

Synthesis of La0.7Sr0.3Mn1-xIrxO3 thin-films in search of superconductivity

  • Byeongjun Seok;Youngdo Kim;Donghan Kim;Jongho Park;Changyoung Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권2호
    • /
    • pp.10-13
    • /
    • 2023
  • 본 연구에서는 현재까지 연구된 HTSC와 다른 새로운 HTSC 물질군으로 제시된 LSMIO에 대한 합성 및 박막 성장과 물성 측정을 진행하였다. LSMIO는 기존의 HTSC 물질들과 비교하여 초전도처럼 보이는 현상의 기작이 상이한 것으로 예상되어 초전도 현상에 대한 이해의 폭을 넓히는데 도움이 될 것으로 기대되는 물질이다. 박막 성장을 위해 고상 합성법을 적용하여 La0.7Sr0.3Mn1-xIrxO3 세라믹 타겟을 합성하였으며, XRD 패턴 분석 결과 La0.7Sr0.3Mn0.88Ir0.12O3 샘플을 1200℃에서 2회 소결하는 것이 최적의 합성 조건임을 찾아내었다. 해당 조성의 LSMIO 세라믹 타겟을 사용하여 레이저 강도를 0.4 J/cm2에서 1.2 J/cm2까지 조절하며 PLD를 사용해 박막을 증착 하였다. 모든 LSMIO 박막은 동일한 단결정 LSAT 기판 위에 같은 두께로 성장하여 기판과 시료 두께에 의한 효과는 배제하였다. RHEED 패턴과 박막 XRD 측정 결과 성장된 박막들은 epitaxial하게 100 UC로 성장되었음을 확인할 수 있었으며, 각 박막들은 저항 측정 결과 모체 화합물인 LSMO와 비슷한 저항 특성을 보이며, 레이저 강도가 강할수록 Curie 온도가 낮아지는 결과가 나타났다. LSMIO와 LSMO가 유사한 전기적 특성을 가지는 것을 볼 때, Curie 온도의 하락은 박막의 Sr 치환 비율의 감소에 의한 것으로 사료된다. 본 연구에서는 HTSC의 후보군인 LSMO에 Ir을 치환하여 결정 및 전자 구조의 다양한 변화 시도하고 그 특성을 관찰하였다. LSMIO 페로브스카이트 시스템에서는 자기 양자불안정 (magnetic quantum instability) 상태 부근에서 강자성요동 (ferromagnetic fluctuation)에 의해 초전도가 발현될 수 있다고 보고되었지만, [5, 14] 본 연구에서 성장된 LSMIO 박막은 일반적인 강자성 특성을 보이며 초전도 현상은 관찰되지 않았다. 차후, 아직은 시작 단계인 LSMIO 소재에 관한 연구 저변을 확대하고 다양한 조성비의 박막을 성장하여 물리적 특성과 근원에 대한 연구가 필요할 것으로 사료된다. 비록 초전도는 발현되지 않았지만 manganite 페로브스카이트 시스템에서 전이금속 원소의 치환 및 세라믹 타겟 합성, 그리고 박막 성장과 특성 분석에 걸친 전과정에 대한 연구를 진행하였다. 이를 바탕으로 차후 다양한 HTSC 소재의 합성 및 박막화와 그 특성을 평가하는 연구에 대한 통찰을 제공하기를 기대한다.

용융온도와 유지시간이 용융법으로 제작한 고온초전도체의 임계특성에 미치는 영향 (The Effects of Melting Temperature and Holding Time on Critical Characteristics of HTSC Fabricated by Melting Method)

  • 임성훈;한태희;박경국;임성우;조동언;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제11권2호
    • /
    • pp.154-161
    • /
    • 1998
  • The effects of melting temperature and holding time on the critical current density($J_c$) of $YBa_2Cu_3O_x$ based superconducting bulk fabricated by MPMG process were investigated. The amount of the formed $Y_2BaCuO_5$ phases increased with the melting temperature. However, the value of critical current density was highest at 1120 $^{\circ}C$. With this proper melting temperature, the effect of holding time on the critical characteristics was also investigated. In the case of Ag addition, the volume of the formed $Y_2BaCuO_5$ phase when the amount of Ag addition was 10 wt% and 20 wt% was observed to be highest at 20 minute and 40 minute respectively. But in the specimen without Ag, volume of $Y_2BaCuO_5$ phase increased as the holding time increased. The proper melting temperature and the holding time obtained were 1120 $^{\circ}C$ and 20 minute. The long holding time was not effective for the $J_c$ improvement as well as the formation of $Y_2BaCuO_5$.

  • PDF