• Title/Summary/Keyword: HTS-FCL

Search Result 41, Processing Time 0.024 seconds

A study on the application of HTS-FCL in Korean Customer Power System (국내 수용가계통에서의 초전도한류기 적용가능성 검토)

  • Lee Seung-Ryul;Kim Jong-Yul;Yoon Jae-Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • As the load density of KEOCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application of 154kV HTS-FCL in Korean power system.

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (퀸칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.73-79
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (?칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.73-73
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

A Study on Optimal Insulation Design of the Distribution Level HTS FCL (배전급 고온초전도 한류기 절연설계 최적화 연구)

  • Seok, B.Y.;Kang, H.;Lee, C.;Nam, K.;Ko, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.723-724
    • /
    • 2006
  • In this study, superconducting coil arrangements and cryostat concept design were conducted for the development of 13.2kV/630A bifilar winding type high temperature superconducting(HTS) fault current limiter(FCL) with YBCO coated conductor(CC) wire. The coil consists of several layers with unique non-inductive solenoid winding method. Six types of HTS coil arrangements were investigated for the optimal insulation design of HTS FCL. And, conceptual design of cryostat was conducted for the decrement of thermal invasion and the prevention of low voltage insulation breakdown in the LHe which is used as pressurization gas in sub-cooling condition of liquid nitrogen(LN2). As the results, it was found that the modified suspended type cryostat with horizontal coil arrangement is beneficial to the insulation design of 13.2kV level bifilar winding type HTS FCL.

  • PDF

Development of HTS-FCL Location Selection Program in Power System (초전도한류기의 최적 적용위치 선정 프로그램 개발)

  • 최흥관;윤재영;김종율;이승렬;이병준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.205-208
    • /
    • 2003
  • Maximum short circuit current of modern power system is becoming so large that the current should transmission capability. Although there are various kinds of method to solve this, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter (HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed.

  • PDF

Development of HTS-FCL Location Selection Program in Power System (초전도한류기의 계통적용점 선정 프로그램 개발)

  • Choi, Heung-Kwan;Yoon, Jae-Young;Kim, Jong-Yeul;Lee, Seung-Ryul;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.321-323
    • /
    • 2003
  • Maximum short circuit current of modern power system is becoming so large that the current should transmission capability. Although there are various kinds of method to solve this, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter(HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed.

  • PDF

Development of HTS-FCL Location Selection Program using Sensitivity Factor (감도계수를 고려한 초전도한류기의 계통적용점 선정 연구)

  • Choi, Heung-Kwan;Yoon, Jae-Young;Kim, Jong-Yeul;Lee, Seung-Ryul;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.240-242
    • /
    • 2004
  • Maximum short circuit current of modern power system is becoming so large that the current should transmission capability. Although there are various kinds of method to solve this, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter (HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, an more efficient method was developed to find suitable FCL application locations using sensitivity factor comparing previous paper.

  • PDF

Expected Future Market Volume of HTS Equipment in South Korea

  • Yoon, Jae-Young;Lee, Seung-Ryul;Yang, B.;Lee, Seung-Yeup;Won, Young-Jin
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.129-133
    • /
    • 2011
  • This paper shows the entire future market volume of the HTS power industry, one of main smart grid equipment, in the case of the final market penetration ratio reaching 100% in the domestic market (South Korea). In this paper, the market penetration ratio is determined using the judgment method, with the market penetration S-curve induced using the Delphi method and the Product Life Cycle from 2011 (supposed launching year, not realistic physical year), to 2050 (expected final target year). This paper analyzes the HTS market penetration ratio of each stage, apparent innovation, early adapters, and the early/late majority and laggard stage, using the S-curve, thus calculating the total future market volume of HTS equipment in the positive sense. Finally, this paper estimates the quantitative analysis results for the HTS4-items (cable, FCL, transformer, rotation machine) of each year within the domestic market.

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

A study on determination of HTS power devices' parameters (초전도기기 주요 파라미터 선정에 관한 연구)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.34-38
    • /
    • 2006
  • There are many parameters that should be considered from the viewpoint of real power system operation and planning in designing HTS power devices. Especially, in the power system with HTS-FCL(fault current limiter) and TR(transformer), there is close correlation between parameters of the HTS power devices. This paper describes some considerations in determining parameters of HTS power devices, which are related to technical and economical aspects. The main parameters in this study are the quench resistance of HTS-FCL and the % impedance of HTS-TR. The results may give basic information for developing the devices.